• Title/Summary/Keyword: Transport Cask

Search Result 64, Processing Time 0.028 seconds

Comparing the performance of two hybrid deterministic/Monte Carlo transport codes in shielding calculations of a spent fuel storage cask

  • Lai, Po-Chen;Huang, Yu-Shiang;Sheu, Rong-Jiun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2018-2025
    • /
    • 2019
  • This study systematically compared two hybrid deterministic/Monte Carlo transport codes, ADVANTG/MCNP and MAVRIC, in solving a difficult shielding problem for a real-world spent fuel storage cask. Both hybrid codes were developed based on the consistent adjoint driven importance sampling (CADIS) methodology but with different implementations. The dose rate distributions on the cask surface were of primary interest and their predicted results were compared with each other and with a straightforward MCNP calculation as a baseline case. Forward-Weighted CADIS was applied for optimization toward uniform statistical uncertainties for all tallies on the cask surface. Both ADVANTG/MCNP and MAVRIC achieved substantial improvements in overall computational efficiencies, especially for gamma-ray transport. Compared with the continuous-energy ADVANTG/MCNP calculations, the coarse-group MAVRIC calculations underestimated the neutron dose rates on the cask's side surface by an approximate factor of two and slightly overestimated the dose rates on the cask's top and side surfaces for fuel gamma and hardware gamma sources because of the impact of multigroup approximation. The fine-group MAVRIC calculations improved to a certain extent and the addition of continuous-energy treatment to the Monte Carlo code in the latest MAVRIC sequence greatly reduced these discrepancies. For the two continuous-energy calculations of ADVANTG/MCNP and MAVRIC, a remaining difference of approximately 30% between the neutron dose rates on the cask's side surface resulted from inconsistent use of thermal scattering treatment of hydrogen in concrete.

Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1 (고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.196-203
    • /
    • 1982
  • To transport the spent fuel assemblies of Korea Nuclear Unit 1, which is a Westinghouse type two loop pressurized water reactor, it has been found that steel is the most appropriate material for the design of a shipping cask in comparison with lead and depleted uranium. The proposed shipping cask will transport nine fuel assemblies at the same time and is well within the weight limit of transportation by unrestricted rail car. The cask requires 33cm thick steel shield and 27cm thick water region to satisfy the 3 feet apart dose rate limit set forth in 10 CFR 71, and 1.27cm thick steel boron fuel basket to hold the fuel elements inside the cask and control the effective multiplication factor. As a safety analysis, the fuel cladding and centerline temperatures were calculated under the accident condition of complete loss of water coolant, and it was found that the temperature was much lower than the limit of the melting point. k$_{eff}$ was calculated with fresh fuel assemblies, which was found to be well lower than 0.95. For shielding computation, the multipurpose Monte Carlo code MORSE-CG and one dimensional discrete ordinates transport code ANISN were used, and the Monte Carlo codes KENO and MORSE-CG were used for criticality calculation. The radiation source terms were calculated using ORIGEN-79.9.

  • PDF

Development and Application of Customized Shielded Cask Transport System

  • Lee, Jong Kwang;Jeon, Min Ku;Jung, Yunmock;Park, Wooshin;Hong, Sun Seok;Choi, Eun-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.157-158
    • /
    • 2018
  • In this work, we developed a customized shielded cask transport system which is equipped with a railguided travelling unit and a position adjustment unit for the cask without any crane service. The designed solid model was verified to have sufficient safety margin by using structural analysis. The developed system was introduced to a hot-cell and successfully tested and verified to have required target performance.

  • PDF

Radiation Shield Analysis for Spent Fuel Shipping Cask (핵연료 수송용기의 방사선 차폐해석)

  • Cho, Kun-Woo;Kim, Hee-Won;Kwon, Seog-Kun;Kwak, Eun-Ho;Moon, Philip-S.
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.148-154
    • /
    • 1985
  • Radiation shield design for a shipping cask, KSC-1, was evaluated to verify that the cask can be used in the transportation of a spent fuel assembly discharged from KNU 5 & 6. Radiation source term of the spent fuel assembly was calculated with the computer program ORIGEN-79, QAD-CG, ANISN-KA and DOT 3.5 codes Were used in the shielding calculations and the nuclear cross section data needed was extracted from the DLC-23/CASK library. It is concluded that KSC-1 shipping cask satisfies the requirements specified in the relevant regulations under normal conditions of transport and under accident conditions in transport.

  • PDF

Criticality Uncertainty Analysis of Spent Fuel Transport Cask applying Burnup Credit (연소도이득효과(BUC) 적용 사용후핵연료 운반용기의 임계 불확실도 평가)

  • Lee, Gang-Ug;Park, Jea-Ho;Kim, Do-Hyung;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.191-198
    • /
    • 2011
  • In general, conventional criticality analyses for spent fuel transport/dry storage systems have been performed based on assumption of fresh fuel concerning the potential uncertainties from number density calculation of Transuranic and Fission Products in spent fuel. However, because of economic loss due to the excessive criticality margin, recently the design of transport/dry storage systems with Burnup Credit(BUC) application has been actively developed. The uncertainties in criticality analyses on transport/storage systems with BUC technique show strong dependance upon initial enrichment and burnup rate, whereas those in the conventional criticality evaluation based on fresh fuel assumption do not show such a dependance. In this study, regulatory-required uncertainties of the criticality analyses for BK 26 Cask, which is conceptually designed spent fuel transport cask with BUC corresponding to the limiting circumstances on nuclear power plants in Korea, are evaluated as a function of initial enrichment and burnup rate. Results of this study will be used as basic data for spent fuel loading curve of BK 26 Cask.

Heat Transfer Analysis around Transport Cask under Transport Hood (사용후핵연료 운반용기 덮개 내부 열전달 해석)

  • Lee, Dong-Gyu;Park, Jae-Ho;Jung, In-Su;Kim, Tae-Man;Yoon, Jeong-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • In case that the maximum temperature of any surface readily accessible during transport of a spent nuclear fuel (SNF) transport cask exceeds $85^{\circ}C$ in the absence of insolation under the ambient temperature of $38^{\circ}C$, personnel barriers or transport hood shall be used to prevent people from casual contact with the transport cask surface. Usually the air temperature within the hood and the hood surface temperature are calculated and further utilized as boundary conditions(free stream temperature and external radiation temperature) for thermal evaluation under normal conditions of transport. In this study, these temperatures are derived using the analytical method based on the heat transfer mechanism around the transport cask under transport hood assuming the thermal equilibrium. By comparing the analytical solutions with the results from the detailed calculations with CFD-computer-code FLUENT 12.1 it is verified that the analytical method is still efficient tool to estimate the temperatures and these temperatures can be further used as boundary conditions for thermal evaluation under normal conditions of transport.

Study on the Impact-proof Internal Structure Design of a Spent Nuclear Fuel Transport Cask (내충격성을 고려한 사용후연료 수송용기 내부구조물의 설계 연구)

  • Shin, Tae-Myung;Kim, Kap-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.370-377
    • /
    • 2009
  • A simple preliminary analysis is often useful to check a validity of design alternatives before the detailed analysis phase in the viewpoint of efficiency. This paper describes a preliminary analysis procedure for the selection among basket design candidates for the spent fuel shipping cask of Korean standard nuclear power plant. As the cask should maintain the structural integrity in hypothetical accident condition, the case of 9 m drop is significantly considered as the worst scenario among the accident conditions in structural design viewpoint in this paper. As basket design options, totally four different types are considered and analyzed in the point of structural integrity at drop impact and weldability for fabrication. As a result, an insertion round plate type with densely spaced supports turns out to be the best in both of the viewpoints, though the weld plate type shows a bit more design margin.

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

Formulation on the Empirical Equation of the Cask Impact Forces by Dimensional Analysis (차원해석을 이용한 사용후 핵연료 수송용기의 충격력 실험식 공식화)

  • Kim Yong-Jae;Choi Young-Jin;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.245-254
    • /
    • 2005
  • Radioactive material is used in the various fields. The numbers of transport for radioactive material have been gradually increased in both domestic and International regions. The safety of the cask should be secured to safely transport of radioactive material. The korean atomic law and the IAEA safety standards prescribe regulations lot the safe transport of radioactive material The cask for spent fuel is comprised of the body and the impact limiter. In this study, the empirical equation of the cask impact force is proposed based on the dimensional analysis. Using this empirical equation the characteristics of the impact limiter are analyzed. The results are also validated by comparing with the previous results of the impact area method and the finite element analysis. The present method can be used to predict the impact force of the cask.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.