• Title/Summary/Keyword: Transplanting rice

Search Result 795, Processing Time 0.029 seconds

Analysis of Variance of Paddy Water Demand Depending on Rice Transplanting Period and Ponding Depth (이앙시기 및 담수심 변화에 따른 논벼 수요량 변화 분석)

  • Cho, Gun-Ho;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.75-85
    • /
    • 2021
  • This study evaluated variations in the paddy rice water demand based on the continuous changing in rice transplanting period and ponding depth at the four study paddy fields, which represent typical rice producing regions in Korea. Total 7 scenarios on rice transplanting periods were applied while minimum ponding depth of 0 and 20 mm were applied in accordance with maximum ponding depth ranging from 40 mm to 100 mm with 20 mm interval. The weather data from 2013 to 2019 was also considered. The results indicated that the highest rice water demand occurred at high temperature and low rainfall region. Increased rice transplanting periods showed higher rice water demand. The rice water demand for 51 transplanting days closely matched with the actual irrigation water supply. In case of ponding depth, the results showed that the minimum ponding depth had a proportional relationship with rice water demand, while maximum ponding depth showed the contrary results. Minimum ponding depth had a greater impact on rice water demand than the maximum ponding depth. Therefore, these results suggest that increasing the rice transplanting period, which reflects the current practice is desirable for a reliable estimation of rice water demand.

Changes in Amylopectin Structure and Pasting Properties of Starch as Affected by Different Transplanting Dates in Rice

  • Kim, Sang-Kuk;Shin, Jong-Hee;Ahn, Deuk-Jong;Kim, Se-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Three different transplanting dates for two rice cultivars grown in Daegu, Republic of Korea, were examined to identify the changes in growth, rice quality, and characteristics of amylopectin. An early transplanting date caused a reduction in the number of panicles in both rice cultivars compared to that in the optimal and late transplanting dates. The 1000-grain weight in the two rice cultivars was significantly increased in the late transplanting date. The rice cultivar tolerant to high temperatures, Donganbyeo, exhibited the lowest milky grain rate in the late transplanting date. The highest rate of head grain was observed in the late transplanting date in both rice cultivars. Regarding the pattern of pasting properties, peak viscosity increased with delayed transplanting dates. With respect to changes in the amylopectin branch-chain length distribution, the amylopectin structure of the translucent Dongan rice cultivar transplanted on April 25 was characterized by a significant increase in A chains with DP > 12, and a decrease in long chains $DP{\geq}37$ compared to that transplanted on June 25. In contrast, the amylopectin structure of the chalky Dongan rice cultivar transplanted on April 25 exhibited further decrease in 13 < DP < 19 than that transplanted on June 25. In the Ungwang rice cultivar, the amylopectin structure of the translucent Ungwang rice cultivar transplanted on April 25 and June 25 was characterized by a significant decrease in the lengths of total amylopectin chains. Furthermore, the amylopectin structure of the chalky Ungwangbyeo rice cultivar transplanted on April 25 was characterized by a significant increase in 7 < DP < 30, while a significant decrease was observed in that transplanted on June 25. These results indicate that the amylopectin structure is altered by different transplanting dates depending on the characteristics of the rice cultivar.

Characteristics of Grain Quality at Different Transplanting Times among Rice Cultivars (벼의 품종별 이앙시기가 미질 특성에 미치는 영향 III. 미립의 호화정도와 식미평가)

  • 고재권
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.146-151
    • /
    • 1998
  • A study was carried our to investigate the characteristics of physico-chemical components palatability of cooked rice accoring to different transplanting time. The treatments were consisted of five transplanting time, from May 5 to July 5 at 15 -day intervals, and six cultivars ; two early-maturing, two mid-maturing and two late-maturing cultivars which are clearly identified by evaluation of cumulative temperature and growth duration from seeding to heading of rice plants. In gelatinization characteristics of rice grain, alkali digestion value was low in the earlier transplanting regardlessof maturing types. Initial pasting temeprature maximum viscosity and breakdown as amylogram charcteristics were high at the transplanting of June 5. The palatability of cookedrice was evaluated that early-maturing cultivars were much better in early transplanting than in late transplanting . The optimum transplanting time for palatibility was the periods from May 5 to 20 in early maturing varieties, May 20 to June 5 in mid-maturing and June 5 to June 20 in late-maturing ones at Honam district in Korea.

  • PDF

Effect of different transplanting and harvest times on yield and quality of pigmented rice cultivars in the Yeongnam plain area

  • Kim, Sang-Yeol;Han, Sang-Ik;Oh, Seong-Hwan;Seo, Jong-Ho;Yi, Hwi-Jong;Hwang, Jung-Dong;Choi, Won-Yeong;Oh, Myung-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.330-339
    • /
    • 2016
  • The effect of transplanting and harvest timing was evaluated for the production of high quality pigmented rice in the Yeongnam plain area. Rice was transplanted on June $2^{nd}$ and $14^{th}$ and harvested between 35 - 55 days after panicle heading at 5 - day intervals. Three black- and 3 red-pigmented rice cultivars (such as early cultivar : Josengheugchal, Jeogjinju; medium cultivar : Heugseol, Hongjinju; and mid-late cultivar : Sintoheugmi, Geongganghongmi) were studied. Yield components like spikelet number, ripened grain ratio, and 1,000 - grain weight of the black- and red-pigmented rice cultivars were similar for both the June 2 and June 14 transplantings but panicle number per $m^2$ was higher for the June 14 transplanting than for June 2. This contributed to a higher brown rice yield for the June 14 transplanting, by 6 - 19% for black-pigmented rice, and by 10 - 21% for red-pigmented rice than the yield for the June 2 transplanting. Total anthocyanin and polyphenol productions of the pigmented rice were also higher in the June 14 transplanting than that in the June 2 transplanting due to high brown rice yield. Based on the combined pigmented brown rice yield, we concluded that the optimal harvest timing would be 40 - 45 days after panicle heading (DAH) for the black-pigmented rice and 45 - 50 DAH for the red-pigmented rice. This study suggests that optimum transplanting and harvest timings play an important role for production of high quality pigmented rice in the Yeongnam plain area.

Effect of Rice Transplanting Date and Optimal Transplanting Dates for Mid-Plain Area in South Korea

  • Shingu Kang;Woonho Yang;Dae-Woo Lee;Jong-Seo Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.59-59
    • /
    • 2022
  • The transplanting date of rice affects grain yield and quality, and it is changed by the environment during cultivation. Thus, it is important to provide the optimal transplanting dates for rice growers under global warming environment. In this study, transplanting date experiments with thirty-day-old seedlings of three cultivars (early, mid, and mid-late maturity) were conducted at the National Institute of Crop Science in Suwon from 2018 to 2021 to determine the optimal transplanting dates for and quantify the effect of planting dates on yield and quality. Transplanting date was strongly associated with culitvar across every year. Clear relationships between transplanting date and head rice yield in early and mid-late maturing rice varieties were observed, and the highest head rice yields were observed during transplantings in mid and late June for early maturing cultivar and mid June for mid-late maturing cultivar. It is obvious that the optimal rice transplanting dates have been shifted and are better later than the optimal transplanting dates in 2002-2004. Days to heading was also strongly associated with the transplanting date and cultivar with 89% of the variation explained. Days to heading was reduced in the later transplanting dates. Grain yield was strongly associate with biomass production during ripening(R2=0.85), however translocated biomass from leaf and stem showed little association with grain yield. The results from this study reconfirmed the importance of shifting optimal transplanting dates to maximize head rice yield for the Mid-plain area in South Korea.

  • PDF

Influence of Different Transplanting Dates on Amylopectin Branch-chain-length and Pasting Properties of Rice Flour Varieties

  • Han, Chae-Min;Shin, Jong-Hee;Kim, Sang-Kuk;Kwon, Tae-Young;KIM, Jong-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • This study was conducted to examine the influence of different transplanting dates on rice quality and starch properties (morphology and pasting properties) of rice varieties that may be used for the production of rice flour. Three rice flour varieties, 'Seolgaeng', 'Hangaru', and 'Milyang317', were transplanted on May 20, May 30, June 10, and June 20. The peak viscosity decreased with a delay in the transplanting date. However, the amylose content increased with a delay in the transplanting date, whereas that of protein decreased. Amylopectin short-branch chain content increased in the rice varieties that were transplanted on May 30. The morphology of the starch granule of the varieties was determined by SEM. No apparent external difference in the starch granules was observed for the different transplanting dates. These results indicate that the transplanting date influenced the amylopectin structure and pasting properties, which led to changes in the physicochemical characteristics of rice starch.

Effect of Tillage and Seeding Methods on Percolation and Irrigation Requirement in Rice Paddy Condition

  • Chae, Je-Cheon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.264-268
    • /
    • 1998
  • The experiment was conducted to clarify irrigation requirement and percolation rate in rice paddy. The four rice cultural system of no-tin, till, transplanting, and direct seeding condition were treated in the lysimeter filled with sandy loam soil. The amounts of irrigation and soil percolation were measured daily, and irrigation requirement was estimated. The daily percolation was 19.5 l/$\textrm{m}^2$ in no-till direct seeding on flooded paddy surface, 17.4 l/$\textrm{m}^2$ in both of till-direct seeding on flooded surface and no-till transplanting, and 15.2 l/$\textrm{m}^2$ in transplanting plot. This is equivalent to 19.5, 17.4, and 15.2 mm per day, respectively. Highest irrigation requirement was 3,770 l/$\textrm{m}^2$ in no-till direct seeding plots. Others were 3,249, 2,577, and 2,321 l/$\textrm{m}^2$ in till-direct seeding, no-till transplanting and transplanting plot, respectively. The estimated irrigation requirement of no-till transplanting, till-direct seeding and no-till direct seeding was increased by 11, 37, and 59% compared to till-transplanting plot. Percolation rate of no-till transplanting, till direct seeding and no-till direct seeding was increased by 12%, 40%, and 66%, respectively compared to the till-transplanting plot. The percolation rate in paddy soil was increased greatly after reproductive stage of rice.

  • PDF

Effect of Transplanting Time on the Physicochemical Properties of Starch in Different Mature Rice Varieties

  • Jong-Hee Shin;Chae-Min Han;Young-Un Song;Sang-Kuk Kim;Jung-Gi Ryu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.35-46
    • /
    • 2023
  • The transplanting period limit considering the rice yield in the Dague region, the inland plains of Gyeongsangbuk-do, was estimated to be July 15th for early and mid-maturing rice and July 5th for mid-late maturing rice. However, as the transplanting time was delayed, the characteristics of rice starch changed significantly. In the case of early and mid-maturing rice varieties, the starch granule size increased as the transplanting time was delayed; the opposite tendency was observed for mid-late maturing varieties. In all mature rice types, the late transplanting resulted in a longer pasting time and a higher pasting temperature. In addition, the peak viscosity, breakdown, and gelatinization temperature were significantly lowered, the relative crystallinity degree decreased, and the setback was significantly increased. In the case of Ilpum, a mid-late maturing rice variety, the distribution of amylopectin short chains tended to increase when rice was transplanted on June 30th.

The Effects of Transplanting Time and Meteorological Change to Variation of Phyllochron of Rice

  • Ku, Bon-Il;Choi, Min-Kyu;Kang, Shin-Ku;Lee, Kyung-Bo;Park, Hong-Kyu;Park, Tae-Seon;Ko, Jae-Kwon;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • This study was performed at Rice and Winter Cereal Crops Department of NICS during 2007 and 2008 to investigate the characteristics of rice leaf emergence and to obtain basic data which can be used for rice growth simulation model by which we can forecast rice growth stage and heading date accurately under different cultivars, transplanting date, and climatic conditions. To confirm leaf emergence rate according to rice maturing ecotype, we surveyed the leaf emergence rate and heading date of Unkwangbyeo, Hwayoungbyeo and Nampyeongbyeo which are early maturing, medium maturing and medium-late maturing cultivars, respectively, according to seedling raising duration and transplanting time. When seedling duration was 15 days, the growth duration between transplanting time and completion of flag leaf emergence on main culm were 51.5~78.3 days in Unkwangbyeo, 55.3~87.9 days in Hwayoungbyeo and 58.4~98.4 days in Nampyeongbyeo, respectively. When seedling duration was 30 days, they were 50.1~75.5 days in Unkwangbyeo, 52.4~84.7 days in Hwayoungbyeo and 56.4~93.8 days in Nampyeongbyeo, respectively. As transplanting time delayed, the emerged leaf number after transplanting decreased in all rice cultivars. The cumulative temperature between transplanting time to completion of flag leaf elongation on main culm were $1,281^{\circ}C{\sim}1,650^{\circ}C$ in Unkwangbyeo, $1,344^{\circ}C{\sim}1,891^{\circ}C$ in Hwayoungbyeo and $1,454^{\circ}C{\sim}2,173^{\circ}C$ in Nampyeongbyeo, respectively. Leaf emergence rate on main culm were precisely represented by equation, y = $y_0$ + a / [1 + exp( - (x - $x_0$) / b)]^c, when we used daily mean temperature as variable.

Occurrence of Major Rice Insect Pests at Different Transplanting Times and Fertilizer Levels in Paddy Field (벼 이앙시기 및 시비수준에 따른 수도 주요해충의 발생.피해)

  • 마경철;이승찬
    • Korean journal of applied entomology
    • /
    • v.35 no.2
    • /
    • pp.132-136
    • /
    • 1996
  • These studies were carried out to investigate the occurrence of rice insect pests related to different transplanting times and N-P-K-fertilizer levels of paddy field in Southern region of Korea. The population densities of brown planthopper (BPH: Nilaparvata lugens Stal), whitebacked planthopper (WBPH: Sogatella furcifera Horvath), small brown planthopper (SBPH: Laodelphax striatellus Fallen), green rice leafhopper (GRLH: Nephotettix cincticeps Uhler), rice stem maggot (RSM: Chlorops oryzae Matsumura), striped rice borer (SRB: Chilo suppressalis Walker), and rice leaffolder (RLF: Cnaphalocrocis medinalis Guenee) were affected more by transplanting time than the fertilizer levels. The later transplanting time induced the higher population densities of BPH, WBPH, SBPH, GRLH, RSM, whereas SRB and RLF were affected by earlier transplanting time in paddy field. The major pests except GRLH and SRB were increasingly induced by higher N-fertilizer level in the late transplanting.

  • PDF