• 제목/요약/키워드: Transpiration

검색결과 390건 처리시간 0.03초

Measurement and estimation of transpiration from an evergreen broad-leaved forest in japan

  • Hirose, Shigeki;Humagai, Tomo′omi;Kumi, Atsushi;Takeuchi, Shin′ichi;Otsuki, Kyoichi;Ogawa, Shigeru
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.52-59
    • /
    • 2001
  • Methods to measure and estimate transpiration of a forest composed of evergreen broad-leaved trees (Pasania edulis Makino) are studied. Heat pulse velocity has been measured along with soil moisture and micrometeorological factors at the Fukuoka Experimental Forest, the Research Institute of Kyushu University Forests in Fukuoka, Japan (33$^{\circ}$38'N, 130$^{\circ}$31'E, alt. 75m). Tree cutting measurement was conducted to convert the heat pulse velocity into sap flow and transpiration. A big leaf model to calculate transpiration and Interception loss is examined and the estimated values are compared with the measured values obtained from the heat pulse measurement. The results show that 1) Pasania edulis Makino posessing radial pore structure had relatively high water content and high heat pulse velocity even within the central part of the stem near the pith, 2) the heat pulse velocity was well correspond to the water uptake in the tree cutting measurement, 3) the estimation of sap flow based on the heat pulse velocity is accurate, and 4) the big leaf model using the parameters obtained from measurement of a portable photosynthesis system in one day in summer gives reasonable estimation of transpiration independent of seasons and weather.

  • PDF

우주진공환경에서의 마이크로 추진 (Micro Propulsion under High Altitude Space Environments)

  • 정성철;허환일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.405-408
    • /
    • 2008
  • From the previous researches about flow characteristic of micro-nozzle, we found that viscosity and back pressure induced heavy losses in micro nozzle. To overcome thess losses, we began to study new conceptual micro propulsion system that is thermal transpiration based micro propulsion system. It has no moving parts and can pump the gaseous propellant by temperature gradient only (cold to hot). Most of previous research on thermal transpiration is in its early stage and mainly studied for application to small vacuum facility or gas chromatography in ambient condition using nanoporous material like aerogel. In this study, we focus on basic research of propulsion system based on thermal transpiration using polyimide material in vacuum conditions.

  • PDF

열천이 현상을 이용한 마이크로 펌프내의 희박기체유동 해석 (Numerical Analysis on Thermal Transpiration Flows for a Micro Pump)

  • 허중식;이종철;황영규;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.27-33
    • /
    • 2007
  • Rarefied gas flows through two-dimensional micro channels are studied numerically for the performance optimization of a nanomembrane-based Knudsen compressor. The effects of the wall temperature distributions on the thermal transpiration flow patterns are examined. The flow has a pumping effect, and the mass flow rates through the channel are calculated. The results show that a steady one-way flow is induced for a wide range of the Knudsen number. The DSMC(direct simulation Monte Carlo) method with VHS(variable hard sphere) model and NTC(no time counter) techniques has been applied in this work to obtain numerical solutions. A critical element that drives Knudsen compressor Is the thermal transpiration membrane. The membranes are based on aerosol or machined aerogel. The aerogel is modeled as a single micro flow channel.

고성능 비행체 엔진을 위한 분출냉각의 연구동향 (Research Activities of Transpiration Cooling for High-Performance Flight Engines)

  • 황기영;김유일
    • 한국항공우주학회지
    • /
    • 제39권10호
    • /
    • pp.966-978
    • /
    • 2011
  • 분출냉각은 높은 압력과 온도의 가혹한 환경에서 운용되는 고성능 액체로켓과 공기흡입엔진을 위한 가장 효과적인 냉각방법이다. 분출냉각이 적용되는 경우, 연소기 라이너와 터빈 블레이드/베인은 다공질 벽면을 통과하는 냉각재(공기 또는 연료)뿐만 아니라 차단막으로 작용하는 벽면을 빠져나온 냉각재에 의해 냉각된다. 이러한 냉각기술의 실용화는 가용한 다공질 재료의 부재로 인해 제한을 받아왔다. 그러나 금속결합 기술의 발전으로 확산접합과 식각된 얇은 금속판으로 제작한 Lamilloy$^{(R)}$와 같은 다층 기공 구조물이 개발되었다. 그리고 또한 경량 세라믹 매트릭스 복합재료가 개발됨에 따라 분출냉각은 근래 고성능 엔진 냉각을 위한 유망 기술로 여겨지고 있다. 본 논문에서는 분출냉각의 최근 연구동향 및 가스터빈, 액체로켓 및 극초음속 비행체 엔진에 이의 적용사례를 고찰하였다.

Effects Water Stress on Physiological Traits at Various Growth Stages of Rice

  • Choi, Weon-Young;Park, Hong-Kyu;Kang, Si-Yong;Kim, Sang-Su;Choi, Sun-Young
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.282-287
    • /
    • 1999
  • The object of this study was to determine the difference of the time course changes of transpiration, diffusion resistance and photosynthetic rate of rice at several different growth stages subjected to soil moisture stress (SMS) and recovery by irrigation. A japonica rice cultivar 'Dongjinbyeo', was grown under flooded condition in a plastic container filled with silty loam soil. At 5 main growth stages, the container was treated by SMS until initial wilting point (IWP) and then reirrigated. The duration of SMS until IWP were the longest, 13 days for tillering stage, and the shortest, 7 days for panicle initiation and meiosis stage. The transpiration rate rapidly decreased during SMS and the transpiration rate at IWP of the stressed plant showed 10∼20% compared with control, and the transpiration rate of stressed plant at most growth stages also recovered rapidly after irrigation and then reached 100% of control within a week. The shoot photosynthetic rate in all growth stages rapidly decreased by SMS, and the rates at IWP of stressed plants were de-creased nearly to 0%, beside the treatment at tillering stage. The recovery degree of photosynthetic rate by irrigation ranged from 20 to 90%, showed higher at early growth stages of SMS treatment than that of later stages. At all growth stages the leaf diffusion resistance of stressed plants was over 3 times that of the control resulting from a rapid increase at 3 to 5 days after draining for SMS, and showed quick recovery by irrigation within 3 days after drainage. The above physiological parameters changed in close relation with the decrease of the soil matric potential after SMS. These results indicate that at all main growth stages of rice plants the transpiration and photosynthesis reduction by stomatal closure reponded sensitively to the first stage of SMS closely related with decrease of soil water potential, while those recovery pattern and recovered degree by irrigation are little different by growth stage of rice.

  • PDF

연초재배기간중(煙草栽培期間中) 증산량(蒸散量) 및 수량(收量) I. 연초생육기간(煙草生育期間)동안의 증산량변화(蒸散量變化)와 토양수분(土壤水分)과의 상호관계(相互關係) (The Interrelationships between Yield, Transpiration of the Tobacco Plant, and Seasonal Meteorological Factors during the Growing Season I. Interrelationship between Change of Soil Moisture and Transpiration during the Growing Season)

  • 홍순달;김재정;조성진;이윤환
    • 한국토양비료학회지
    • /
    • 제22권3호
    • /
    • pp.228-233
    • /
    • 1989
  • P.V.C관(管)(직경 40cm)을 이용(利用)한 지하수위조절용(地下水位調節用) 폿트재배(栽培)(지하수위(地下水位) : 30cm 및 100cm)로 연초생육기간(煙草生育期間)동안의 일증산양변화(日蒸散量變化)와 자연강우분포조건(自然降雨分布條件)에서 재배포장(栽培圃場)의 근권토양수분변화(根圈土壤水分變化)를 조사(調査)한 결과(結果) 연초식물(煙草植物)의 증산(蒸散)으로 수분소모양(水分消耗量)이 가장 많은 기간(期間)은 이식후(移植後) 40일(日)에서 60일(日)까지로 전생육기간(全生育期間)동안(70일(日)) 증산(蒸散)된 양(量)의 약(約) 50%를 차지했다. 따라서 재배포장(栽培圃場)의 근권토양수분량(根圈土壤水分量)은 이 기간(期間)동안에 매우 낮은 조건(條件)으로 지속되었다. 또 연초식물(煙草植物)의 증산량(蒸散量)은 기상환경변화(氣象環境變化)에 따라 민감하게 영향을 받아 청명한 날은 흐리고 비오는날보다 약(約) 3배(倍) 많았으며 주간(晝間)의 14:00시(時)부터 16시(時)사이에 최대증산량(最大蒸散量)을 보였고 24:00시(時)부터 08:00시(時)사이에 가장 적은 증산량(蒸散量)을 나타냈다.

  • PDF

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

온실의 환경요인을 이용한 인공신경망 기반 수경 재배 파프리카의 증산량 추정 (Transpiration Prediction of Sweet Peppers Hydroponically-grown in Soilless Culture via Artificial Neural Network Using Environmental Factors in Greenhouse)

  • 남두성;이준우;문태원;손정익
    • 생물환경조절학회지
    • /
    • 제26권4호
    • /
    • pp.411-417
    • /
    • 2017
  • 광도, 포차와 같은 환경요인과 엽면적 지수와 같은 생육요인은 증산 속도를 변화시키는 중요한 변수이다. 본 연구에서는 Penman-Monteith의 증산 모델과 인공신경망(ANN)에 학습에 의한 증산속도 추정값을 비교하는 것을 목표로 하였다. 파프리카(Capsicum annuum L. cv. Fiesta)의 증산속도 추정은 로드셀을 이용한 배지의 중량변화를 통해 계산하였다. 온도, 상대습도, 배지 중량 데이터는 1분 단위로 2개월간 수집하였다. 증산량은 일차식으로는 정확한 추정이 어렵기 때문에, 기존의 Penman-Monteith식에 보정 광도를 사용한 수정식 Shin 등(2014)을 사용하였다. 이와는 별개로 ANN을 사용하여 증산량을 추정 비교하였다. 이를 위하여 광도, 온도, 습도, 엽면적지수, 시간을 사용한 입력층과 5개의 은닉층으로 구성된 ANN을 구축하였다. 각 은닉층의 퍼셉트론 개수는 가장 정확성이 높은 512개로 하였다. 검증 결과, 보정된 Penman-Monteith 모델식의 $R^2=0.82$이었고, ANN의 $R^2=0.94$로 나타났다. 따라서 ANN은 일반적인 모델식에 비해 정확한 증산량 추정이 가능한 것으로 나타났고, 추후 수경재배의 효율적인 관수전략 수립에 있어 적용 가능할 것으로 판단되었다.

마이크로 추진장치에 적용을 위한 누센수에 따른 열적발산원리의 효율분석 (Efficiency Analysis of Thermal Transpiration According to Knudsen Number for Application to Micro-propulsion System)

  • 정성철;허환일
    • 한국항공우주학회지
    • /
    • 제36권5호
    • /
    • pp.483-490
    • /
    • 2008
  • 마이크로 추진장치에서 노즐의 소형화는 많은 유동손실을 유발한다. 이러한 유동손실을 극복하기 위해 본 연구에서는 열적발산원리를 이용한 마이크로 추진장치에 대한 기초연구를 진행하였다. 움직이는 부품 없이 오직 온도구배만으로 추진제를 낮은 온도에서 높은 온도로 자체 펌핑이 가능한 열적발산장치를 설계, 제작 하였으며, 진공환경에서 누센수에 따른 맴브레인 압력구배효율을 분석하였다. 실험결과 천이영역에서는 두꺼운 맴브레인의 효율이 다소 높았으며, 자유분자영역에서는 두께에 관계없이 최대 압력구배 효율이 82%까지 증가하는 것을 확인할 수 있었다.

Effect of $TO_3$ and $NO_2$ on Net Photosynthesis, Transpiration and Accumulation of Nitrite in Sunflower Leaves

  • Park, Shin-Young;Lee, Sang-Chul
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권2호
    • /
    • pp.121-129
    • /
    • 1999
  • Photosynthesis and transpiration rates were simultaneously measured in attached sunflower leaves(Helianthus annuusL. cv. Russian Mammoth) during exposure to $NO_2$ and $O_3$ to determine the effect of mixed gan on photosynthesis and the stomatal aperture. The application of $O_3$ alone reduced both the net photosynthetic and transpiration rates. An analysis of the $CO_2$ diffusive resistances indicated that the main cause affecting photosynthesis reduction during $O_3$ exposure was not the internal gas phase of the leaf $(rCO_2^{liq})$ but rather the liquid phase or mesophyll diffusive resistance $(rCO_2^{liq})$, suggesting that there is a very concomitant relation between photosynthetic reduction and $rCO_2^{liq}$. The application of NO2 alone caused a marked reduction of the net photosynthesis yet no significant reduction of transpiration, indicating that NO2 affects the $CO_2$ fixation processes with no inluence on the stomatal aperture. A greter reduction in the photosynthesis of sunflower plants was caused by the application of $NO_2$ alone as compared to a combination of $NO_2$ and $O_3$. $NO_2$ alone reduced the photosynthetic rate by 90%, whereas a mixture of NO2 and O3 reduced it by 50%.

  • PDF