• 제목/요약/키워드: Transpeptidation

검색결과 5건 처리시간 0.019초

펩신촉매에 의한 Transpeptide의 생성 (The Evidence for Pepsin-Catalyzed Transpeptidation)

  • 조용권
    • 생명과학회지
    • /
    • 제8권4호
    • /
    • pp.410-415
    • /
    • 1998
  • HPLC 및 electrospary mass spectrum으로부터 L-L dipeptide의 존제하에서 pepsin은 hexapeptide인 L-S-pNF-Nle-A-OMe를 가수분해하여 가수분해물외의 새로운 생성물을 합성하는 것이 확인되었다. 이 생성물은 254nm에서 p-nitro-Phe 잔기를 포함하는 peptide였다. 실험결과로부터 E(L-S-pNF)와 L-L 사이의 acyl transpeptidation에 의해 L-S-pNF-L-L가 생성됨을 뒷받침한다. 이러한 transpeptidation 결과는 product 저해실험에 의한 결과에 기초한 것과는 반대로 L-S-pNF가 해리되기전에 Nle-A-L-OMe가 먼저 한다는 것을 보여준다. 그리고, electrospray mass spectrum 으로부터 위에서 검출된 새로운 펩티드에 해당하는 peak (MW 636.1)을 얻었는데, 이는 새 펩티드의 생성을 확실히 증명하는 증거이다. 한편, Nle-A-L-OMe 생성에 대한 solvent isotope effect는 1.736$\pm$0.121이며 L-S-pNF는 2.28$\pm$0.184 그리고 L-S-pNF-L-L의 생성에는 inverse isotope effect로서 0.576$\pm$0.045였는데, 이는 상기 생성물 해리 순서를 확인시켜 준다. D$_{2}$에서 transpeptidation은 더 빠르기 때문에 isotopically-sensitive단계는 Nle-A-L-OMe해리후에 존재하는 것을 알 수 있다. 본 실험결과는, Rebholz and Northrop$^{1)}$ 및 Cho등의 $^{2)} iso-mechanism이론의 타당성을 제시한다.

  • PDF

A Spectrophotometric Assay for ${\gamma}$-Glutamyl Transpeptidase Activity

  • Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.360-363
    • /
    • 1994
  • A colorimetric assay for $\gamma$-glutamyl transpeptidase ($\gamma$-CTP; E.C 2.3.2.2) employing 2, 4, 6-trinitrobenzene sulfonate (TNBS) to detect the amount of disappeared acceptor via transpeptidation, has been developed. Under the experimental conditions using L-$\gamma$-glutamyl ethyl ester and L-phenylalanine as $\gamma$-glutamyl donor and acceptor, respectively, it was found that the decreased absorbance of yellow color at 420 nm was strictly related to the amount of L-$\gamma$-glutamyl-L-phenylalanine (L-$\gamma$-Glu-L-Phe) formed, which was determined by DEAE-cellu-lose column chromatography. Concentrations of the enzyme and $\gamma$-glutamyl products were able to be determinedin the nanogram and nanomoles per milliliter range, respectively, with high precision and reliability. This novel assay system may therefore be a useful means for understanding of catalytic function of the $\gamma$-CTP spectrophotometrically without any usage of sophisticated instruments.

  • PDF

Activity Determination, Kinetic Analyses and Isoenzyme Identification of Gamma Glutamyltransferase in Human Neutrophils

  • Sener, Azize;Yardimci, Turay
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.343-349
    • /
    • 2005
  • Gamma-glutamyltransferase (GGT, EC 2.3.2.2) which hydrolyzes glutathione (GSH), is required for the maintenance of normal intracellular GSH concentration. GGT is a membrane enzyme present in leukocytes and platelets. Its activity has also been observed in human neutrophils. In this study, GGT was purified from Triton X-100 solubilized neutrophils and its kinetic parameters were determined. For kinetic analyses of transpeptidation reaction, $\gamma$-glutamyl p-nitroanilide was used as the substrate and glycylglycine as the acceptor. Apparent $K_m$ values were determined as 1.8 mM for $\gamma$-glutamyl p-nitroanilide and 16.9 mM for glycylglycine. The optimum pH of GGT activity was 8.2 and the optimum temperature was $37^{\circ}C$. It had thermal stability with 58% relative activity at $56^{\circ}C$ for 30 min incubation. L-serine, in the presence of borate, was detected as the competetive inhibitor. Bromcresol green inhibited neutrophil GGT activity as a noncompetetive inhibitor. The neutrophils seem to contain only the isoenzyme that is present in platelets. We characterized the kinetic properties and compared the type of the isoenzyme of neutrophil GGT with platelet GGT via polyacrylamide gel electrophoresis (PAGE) under a standart set of conditions.

새로운 합성 펩티드에 대한 펩신 작용 1. Benzyloxycarbonyl-glycyl-L-tyrosyl-L-phenylalanyl-glycine 과 그의 에틸에스테르에 대한 펩신 작용 (Pepsin Action on the New Synthetic Peptides 1. Pepsin action on benzyloxycarbonyl-glycyl-L-tyrosyl-L-phenylalanyl-glycine and its ethyl ester)

  • 윤주억;신홍대
    • 대한화학회지
    • /
    • 제13권3호
    • /
    • pp.233-240
    • /
    • 1969
  • The synthesis is described of new pepsin substrates of benzyloxycarbonyl-glycyl-L-tyrosyl-L-phenylalanyl-glycine ethyl ester and benzyloxycarbonyl-glycyl-L-tyrosyl-L-phenylalanyl-glycine for studies on the specificity of pepsin, and thin layer chromatographic examination of the peptides prepared showed the new substrates are homogeneous and also, same examination of the incubation mixtures showed that two synthetic substrates are cleaved by pepsin at the L-tyrosyl-L-phenylalanyl bond and hydrolysis of these substrates by pepsin is achieved without transpeptidation. It is found that synthetic peptides are moderately soluble with the amount of the substrate up to a concentration of 0.7 mM in aqueous sodium citrate buffers (0.04 M) in the pH range 1.8-4.0, thus obviating the necessity for the adding of an organic solvent in the assay mixture. The kinetic parameters for synthetic substrates are tabulated in the following table. The data in the table indicate that the susceptibility of synthetic peptides to peptic hydrolysis are relatively large and the change of the carboxyl-terminal group of synthetic substrate from glycine ethyl ester to glycine causes a small decrease in the susceptibility of the L-tyrosyl-L-phenylalanyl bond.

  • PDF

고등식물에 미치는 항생물질의 영향 (제4보) - 대두 Aminoacid metabolism에 미치는 항생물질의 영향에 대하여

  • 이민재;이영록
    • 약학회지
    • /
    • 제3권1호
    • /
    • pp.4-9
    • /
    • 1957
  • Effects of antibioties on micro-organism have been reported by many scientists, such as Krampitz and Werkman, Fisher, Gale and Rodwell, Klimick Cavalito and Bailey, Umbreit, etc. On the mechanism by which penicillin act, Fisher(1947), Platt(1947), and Cavallito, considered that penicillin might act on bacteria by inhibiting with the normal function of SH-group of glutathione in the metabolism of the cell. Resenbrance of penicillin to gultathione in structure and the inactivation of penicillin by cysteine make us approve of the above inhibiting theory of SH-group. Galland (1947) and Schmidt (1947) reported that penicillin inhibited the activity of ribonuclease, Phosphatase, and mononucleotidase. Gale (1948) discovered that the gram positive bacteria had lost the power to uptake glutamic acid by ribonucleic acid in the medium contained penicillin: growth of gram positive organism was inhibited by the results that penicillin inhibited the uptake of amino acid byribonucleic acid, acting on ribonucleic acid of gram positive bacteria. Hotchkiss (1950) cultured S. aureus in the medium contained glucose and amino acids, and studied the effect of penicillin on protein synthesis. Peptide formation in living cells was inhibited by penicillin, while amono acid was utilized as before the addition of penicillin. On the otherhand, Binkley (1951) found penicillin interfered hydrolase of glutath one, and Hans (1950) reported penicillin inhibited the transpeptidation. On the machanism by which streptomycin acts. Cohen (1947) reported steptomycin made a irreversible complex with desoxyribonucleic acid, by the fact that desoxyribonucleic acid formed the precipitates with diguanide group of steptomycin. Zeller (1951) reported, on the other hand, streptomycin inhibited diamine oxidease. Geiger (1947) and Umbreit (1949) reported that steptomycin inhibited condensation of oxaloacetate and pyruvate in E. Coli and Oginsky et al (1949) reported steptomycin inhibited oxaloacetate-pyruvate reaction in Kreb's cycle. On the mechanism by which terramycin acts, Hahn & Wisseman (1951) reported that the formation of adaptive enzyme was inhibited by terramycin in E. Coli cultivated in the medium contained loctose, and that the protein synthesis was inhibited by terramycin. However, effects of antibiotics on amino acid metabolism have not been discussed much in spite of its important role in living cells. Especislly, effects of anitibiotics on higher plants have scarcely been reported. Here, to prove the effect of antibiotics on higher plants, and the mechanism by which, through amino acid metabolism, they promote or inhibit growth of plants, amino acids in bean plants treated with penicillin, streptomycin, and terramycin were analyzed by paper chromatography. And to clarify the antagonis of cysteine (as SH-group) against penicillin, through amino acid metabolism, amino acids in bean plants treated with cystene and penicillin, at the same time, were also analyzed.

  • PDF