• 제목/요약/키워드: Transparent conducting oxide film

검색결과 214건 처리시간 0.033초

Surface Textured ZnO:Al 투명전도막 제작 및 특성 (The fabrication and properties of surface textured ZnO:Al films)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Spin-coating을 이용하여 Flexible Film에 제작된 ZnO TCO의 특성 분석 (The Characterization of Spin Coated ZnO TCO on the Flexible Substrates)

  • 전민철;이규탁;박상욱;이경주;문병무;조원주;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.290-293
    • /
    • 2012
  • This article introduces the characterization of spin coated ZnO transparent conducting oxide on the flexible substrates. As a II-IV compound semiconductor, ZnO has a wide band gap of 3.37 eV with transparent properties. Due to this transparent properties, ZnO materials can be also employed as the transparent conducting electrode materials. Therefore, strong demands have been required for the transparent electrodes with low temperature processing and cheap cost. So, We will investigate the electrical property and optical transmittance of ZnO transparent conducting oxide through the 4-point probe resistivity meter, and ultraviolet-vis spectrometer Lamda 35, respectively.

솔-젤 Dip Coating에 의한 Sb-doped $SnO_2$ 투명전도막의 제조 및 특성 (Fabrication of Sb-doped $SnO_2$ transparent conducting films by sol-gel dip coating and their characteristics)

  • 임태영;오근호
    • 한국결정성장학회지
    • /
    • 제13권5호
    • /
    • pp.241-246
    • /
    • 2003
  • ATO(antimony-doped tin oxide) 투명전도막을 sol-gel dip coating 방법에 의해 $SiO_2$/glass 기판 위에 성공적으로 제조하였다 ATO막의 결정상은 $SnO_2$상임을 확인하였고, 막의 두께는 withdrawal speed를 50 mm/minute로 코팅시 약 100 nm/layer였다. $SiO_2$/glass 기판 위에 코팅한 400 nm두께의 ATO 박막을 질소분위기에서 annealing한 후, 측정한 광 투과율과 전기 저항치는 각각 84%와 $5.0\times 10^{-3}\Omega \textrm{cm}$였다. 이러한 특성은 $SiO_2$막이 Na 이온의 확산을 제어하여 $Na_2SnO_3$ 및 SnO와 같은 불순물의 형성을 억제하고, 막 내부의 Sb의 농도와 $Sb^{3+}$에 대한 $Sb^{5+}$의 비를 증가시키는데 기여했기 때문으로 확인되었다. 또한, $N_2$ annealing은 $Sb^{5+}$뿐만 아니라 $Sn^{4+}$를 환원시킴으로써 전기전도도를 향상시킴을 확인하였다.

Highly Laminated Electrospun ZnO Nanofibrous Film on the Transparent Conducting Oxide for Photovoltaic Device

  • Kim, Jinsoo;Yoon, Sanghoon;Yoo, Jung-Keun;Kim, Jongsoon;Kim, Haegyeom;Kang, Kisuk
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권2호
    • /
    • pp.68-71
    • /
    • 2012
  • The electrospinning technique is a revolutionary template-catalyst-free method that can generate 1D nanostructure with the tunability and the potential for the mass production. This approach received a great deal of attention due to its ability to give direct pathways for electrical current and has been utilized in various electronic applications. However, the delamination of inorganic electrospun film has prevented the intense utilization due to the thermal expansion/contraction during the calcination. In this study, we propose an electrical grounding method for transparent conducting oxide and electrospun nanowires to enhance the adhesion after the calcination. Then, we examined the potential of the technique on ZnO based dye-sensitized solar cells.

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성 (Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering)

  • 박강일;김병섭;임동건;이수호;곽동주
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.

투명전도막의 특성향상을 위한 기판 표면처리법의 최적화 (Optimization of polymer substrate's surface treatment for improvement of transparent conducting oxide thin film)

  • 최우진;김지훈;정기영;;추영배;성열문;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1425_1426
    • /
    • 2009
  • In this study, commercially available polyethylene terephthalate(PET), which is widely used as a substrate of flexible electronic devices, was modified by dielectric barrier discharge(DBD) method in an air condition at atmospheric pressure, and aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET substrate by r. f. magnetron sputtering method. Surface analysis and characterization of the plasma-treated PET substrate was carried out using contact angle measurements, X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscopy (AFM). Especially the effect of surface state of PET substrate on some important properties of ZnO:Al transparent conducting film such as electrical and morphological properties and deposition rate of the film, was studied experimentally. The results showed that the contact angle of water on PET film was reduced significantly from $62^{\circ}$ to $43^{\circ}$ by DBD surface treatment at 20 min. of treatment time. The plasma treatment also improved the deposition rate and electrical properties. The deposition rate was increased almost linearly with surface treatment time. The lowest electrical resistivity as low as $4.97{\times}10^{-3}[\Omega-cm]$ and the highest deposition rate of 234[${\AA}m$/min] were obtained in ZnO:Al film with surface treatment time of 5min. and 20min., respectively.

  • PDF

탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술 (Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology)

  • 한중탁
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.323-330
    • /
    • 2016
  • The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • 김세준;김홍범;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF