• Title/Summary/Keyword: Transparent Layer

Search Result 683, Processing Time 0.032 seconds

Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer (CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성)

  • Kim, So-Youn;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Fabrication of OLED using low cost transparent conductive thin films (저가격 투명전극을 이용한 OLED의 제작)

  • Lee, B.J.;Shin, P.K.;You, D.H.;Ji, S.H.;Lee, N.H.;Park, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1281-1282
    • /
    • 2008
  • Low cost TCO(Transparent Conductive oxide) thin films were prepared by 3" DC/RF magnetron sputtering systems. For the AZO preparation processes a 99.99% AZO target (Zn: 98 wt.%, $Al_2O_3$: 2 wt.%) was used. In order to verify feasibility of the AZO thin films to organic light emitting device (OLED) application, test organic light emitting device was fabricated based on AZO as TCO, TPD as hole transporting layer (HTL), Alq3 as both emitting layer (EML) and electron transporting layer (ETL), and aluminium as cathode, where the both ITO and AZO surfaces were treated using $O_2$ RF plasma. The I-V characteristics of the AZO/TPD/Alq3/Al OLEDs were evaluated. As the results, the performance of the OLEDs with AZO as transparent conducting anode could be useable.

  • PDF

Oxide TFT Structure Affecting the Device Performance

  • KoPark, Sang-Hee;Cho, Doo-Hee;Hwang, Chi-Sun;Ryu, Min-Ki;Yang, Shin-Hyuk;Byun, Chun-Won;Yoon, Sung-Min;Cheong, Woo-Seok;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.385-388
    • /
    • 2009
  • We have investigated the effect of the device structure on the performance of polycrystalline ZnO TFT and amorphous AZTO TFT with top gate and bottom gate structure. While the mobility of both TFTs showed relatively similar value in a top and bottom gate structure, bias stability was quite different depending on the device structure. Top gate TFT showed much less Vth shift under positive bias stress compared to that of bottom gate TFT. We attributed this different behavior to the defects formation on the gate insulator induced by energetic bombardment during the active layer deposition in a bottom gate TFT. We suggest the top gate oxide TFT would show more stable behavior under the Vgs bias.

  • PDF

Effective Light Management of Three-Dimensionally Patterned Transparent Conductive Oxide Layers

  • Kim, Joon-Dong;Kim, Min-Geon;Kim, Hyun-Yub;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.85-85
    • /
    • 2012
  • For effective light harvesting, a design weighting should be implemented in a front geometry, in which the incident light transmits from a surface into a light-active layer. We designed a three-dimensionally patterned transparent conductor layer for effective light management. A transparent conductive oxide (TCO) film was formed as three-dimensional structures. This efficiently drives the incident light at the front surface into a Si absorber to yield a reduction in reflection and an enhancement of current. This indicates that an optimum architecture for a front TCO surface will provide an effective way for light management in solar cells.

  • PDF

Optical Simulation of Transparent Electrode for Application to Organic Photovoltaic Cells

  • Jo, Se-Hui;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.440-440
    • /
    • 2012
  • The optical characteristics of transparent electrode with various kind of materials and thickness to be used for organic photovoltaic cells were studied by simulation methodology. It demonstrated that the transmittance varies with the kinds of materials, the number of layers and change in the thickness of each layer. In the case of the structure composed of dielectric/Ag/dielectric, optimized transmittance was higher than 90% at 550 nm and the thickness of the Ag layer was ~10nm. Top and bottom dielectric materials can be changed with different refractive index and extinction coefficient. The relation between the optical transmittance of device and transparent electrode with different refractive indices was discussed as well. By processing numerical simulations, an optimized optical transmittance can be obtained by tunning the thickness and materials of transparent electrode.

  • PDF

Formation of Transparent Metal Electrode for Top Emission OLEDs (Top Emission OLED를 위한 금속을 이용한 투명전극 형성)

  • Ha, Mi-Young;Kim, So-Youn;Moon, Dae-Gyu;Lee, Chan-Jae;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.457-458
    • /
    • 2006
  • Transparent metal cathodes using Ca/Ag, Ba/Ag double layers have been fabricated to investigate its optical transmission. The transmission spectra show that Ca/Ag and Ba/Ag double layers result in higher transmittance compared to Ag single layer. The Ba/Ag double layer shows over 80% transmittance at 400 nm and 70% at 700 nm. The electroluminescence efficiency of fluorescent TEOLED using Ba/Ag transparent metal cathode was 10 ~ 15 cd/A.

  • PDF

Adhesion Change of AZO/PET Film by ZrCu Insertion Layer

  • Ko, Sang-Won;Jung, Jong-Gook;Park, Kyeong-Soon;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • In order to form an aluminum-doped zinc oxide (AZO) transparent electrode film on a polyethylene terephthalate (PET) substrate used for a flexible display substrate, the AZO transparent electrode was produced at low temperature without substrate heating. Even though the produced electrode showed characteristic optical transmittance of 90 % (at 550 nm) and sheet resistance within $100{\Omega}/sq$, cracks occurred 10 minutes after loading applied 2 mm radius of curvature, and the sheet resistance increased linearly. An insertion layer of ZrCu was formed between the AZO film and the PET substrate to suppress the generation of cracks on the AZO film. It was verified that the crack was not generated 30 minutes after the loading of 2 mm radius of curvature, and no increase in sheet resistance was recorded. There was also not cracks in the dynamic bending test of 4 mm radius, but surface resistance was slightly increased. As a result, the ZrCu insertion film improved the interfacial adhesion between the substrate and AZO film layer without increasing sheet resistance and decreasing transmittance.

Fabrication of the ITO/Mesh-Ag/ITO Transparent Electrode using Ag Nano- Thin Layer with a Mesh Structure and Its Characterization (메쉬 구조의 Ag 나노박막을 이용한 ITO/Mesh-Ag/ITO 고전도성 투명전극 제조 및 특성 분석)

  • Lee, Dong Hyun;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.100-104
    • /
    • 2019
  • The 'ITO/Ag/ITO' multilayers as a highly conductive and transparent electrode, even with the optimum thickness conditions, the transmittances were much lower than those of a single ITO layer on some ranges of the visible wavelength. In order to improve the transmittance, Ag layer was formed with mesh structure. Where, the thickness of the Ag layer was about 10 nm and the space between the Ag lines was varied from 2.9 ㎛ to 19.6 ㎛ with the fixed Ag width of about 1.2 ㎛ in order to vary an open ratio of the Ag mesh structure. The transmittance and sheet resistance in the ITO/Mesh-Ag/ITO multilayer structure were analyzed depending on the open ratio. As a result, a trade off in the open ratio was necessary in order to obtain the transmittance as high as possible and the sheet resistance as possible low. By the open ratio of about 86%, in the ITO/Mesh-Ag/ITO multilayer structure, the transmittance was nearly same as the single ITO layer and the sheet resistance was about 62.3 Ω/.

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.