• Title/Summary/Keyword: Transparent Electrode

Search Result 497, Processing Time 0.025 seconds

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode (은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Interaction Between Transparent Dielectric and Bus Electrode for Heating Profile in PDP

  • Lee, Sang-Wook;Kim, Dong-Sun;Park, Mi-Kyung;Hwang, Seong-Jin;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.864-866
    • /
    • 2007
  • In PDP, bus electrode should have low resistance for high efficiency. The transparent dielectric affects the shape change of bus electrode during the firing. These are related with the electrical property of the electrode. In this study, the shape of electrode was controlled by firing schedules of the transparent dielectric and the bus electrode.

  • PDF

Highly Conductive Flexible Transparent Electrode Using Silver Nanowires & Conducting Polymer

  • Seo, Dong-Min;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.547-547
    • /
    • 2012
  • As displays become larger and solar cells become cheaper, there is an increasing need for low-cost transparent electrodes. Intensive effort has been made to replace ITO (Indium Tin Oxide) based transparent electrode with cheap and flexible ones. Among those, silver nanowires have got limelight because of its great conductivity and flexibility. Even though the electric property of the Ag nanowire based transparent electrode surpassed ITO, the optical property needs to be improved (lower transmittance, higher haze). Here, we reported transparent electrode based on Ag nanowires and conducting polymer to improve optical properties. The Ag nanowires are coated onto PET films and the resulting transparent electrode film shows $200ohm/{\Box}$ resistance and > 90% optical transmittance.

  • PDF

Research on Glass Dielectric Capacitive Coupling Wireless Power Transfer Using Transparent Electrode (투명 전극을 적용한 유리 유전체 커패시티브 커플링 무선 전력 전송에 관한 연구)

  • Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.286-289
    • /
    • 2018
  • This paper tests the feasibility of using the transparent electrode as the electrode of the capacitor in order to use the vehicle glass of the electric vehicle for a capacitive coupling wireless transfer (CCWPT). Large coupling capacitance can be obtained due to large area and high permittivity using the glasses of an electric vehicle. However, if an electrode is formed on a metal such as copper, then a view cannot be guaranteed and a transparent electrode can pose a solution. Therefore, the coupling capacitor is implemented by forming a glass dielectric with an ITO transparent electrode on one side through a semiconductor deposition process. The loss of the coupling capacitor is investigated, and a 200 W CCWPT prototype is fabricated and tested for its characteristics and power transfer.

Top-emission Electroluminescent Devices based on Ga-doped ZnO Electrodes (Ga-doped ZnO 투명전극을 적용한 교류무기전계발광소자 특성 연구)

  • Lee, Wun Ho;Jang, Won Tae;Kim, Jong Su;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2017
  • We explain optical and electrical properties of top and bottom-emission structured alternating-current powder electroluminescent devices (ACPELDs) with Ga-doped ZnO(GZO) transparent electrode. The top-emission ACPELDs were layered as the metal electrode/dielectric layer/emission layer/top transparent electrode and the bottom-emission ACPELDs were structured as the bottom transparent electrode/emission layer/dielectric layer/metal electrode. The yellow-emitting ZnS:Mn, Cu phosphor and the barium titanate dielectric layers were layered through the screen printing method. The GZO transparent electrode was deposited by the sputtering, its sheet resistivity is $275{\Omega}/{\Box}$. The transparency at the yellow EL peak was 98 % for GZO. Regardless of EL structures, EL spectra of ACPELDs were exponentially increased with increasing voltages and they were linearly increased with increasing frequencies. It suggests that the EL mechanism was attributed to the impact ionization by charges injected from the interface between emitting phosphor layer and the transparent electrode. The top-emission structure obtained higher EL intensity than the bottom-structure. In addition, charge densities for sinusoidal applied voltages were measured through Sawyer-Tower method.

  • PDF

Improvement of Electrical Property and Stability of Silver Nanowire Transparent Electrode Via Ion-beam Treatment (이온빔 처리를 통한 은나노와이어 전극의 전기적 특성과 안정성 향상)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.455-459
    • /
    • 2017
  • The development of flexible transparent electrode has been paid attention for flexible electronics. In this study, we have developed transparent electrode based on silver nanowires with improved electrical property and stability through ion-beam treatment. The energetic particles of ion-beam could sinter junctions of each silver nanowires and etch out polyvinylpyrollidone(PVP) coated on silver nanowires. The sheet resistance of silver nanowire transparent electrode was reduced by 74%, and the resistance uniformity was increased about 3 times after exposure of ion beam. Moreover, the stability at $85^{\circ}C$ of temperature and 85% of relative humidity could be also improved.

Development of AgNW/Reduced Graphene Oxide Hybrid Transparent Electrode with Long-Term Stability Using Plasma Reduction (플라즈마 환원 기술을 응용한 장수명의 은나노와이어/Reduced Graphene Oxide 하이브리드 투명전극 개발)

  • Jung, Sunghoon;Ahn, Wonmin;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.87-91
    • /
    • 2016
  • The development of high performance transparent electrode with flexibility have been required for flexible electronics. Here, we demonstrate the silver nanowire and reduced graphene oxide hybrid transparent electrode for replacing brittle indium-tin-oxide electrode by spray coating technique and plasma reduction. The spray coating system is applied to deposit silver nanowire and over coated graphene oxide films and it has a great potential to scale-up. The resistance of silver nanowire transparent electrode is reduced by 10% and the surface roughness is decreased after graphene oxide coating. The over-coated graphene oxide is successfully reduced by $H_2$ plasma treatment and it is effective in increasing the environmental stability of electrode. The lifetime of silver nanowire and reduced graphene oxide hybrid electrode at $85^{\circ}C$ of Celsius degree of temperature and 85% of relative humidity has much increased.

Characterization of Ag Nanowire Transparent Electrode Fabricated on PVDF Film (PVDF 필름 위에 제작된 고전도도 Ag 나노와이어 투명전극 특성 연구)

  • Ra, Yong-Ho;Park, Hyelim;An, Soyeon;Kim, Jin-Ho;Jeon, Dae-Woo;Kim, SunWoog;Lee, Mijai;Hwang, Jonghee;Lim, Tae Young;Lee, YoungJin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.366-370
    • /
    • 2019
  • In this study, we have successfully fabricated a highly conductive transparent electrode using Ag nanowires, based on piezoelectric polyvinylidene difluoride (PVDF) film, that can be applied as transparent and flexible speakers. The structural morphology of the Ag nanowires was confirmed by a detailed scanning electron microscopy. Ultraviolet-visible spectroscopy demonstrated that the transparent electrode fabricated by the Ag nanowires exhibited a transmittance of above 70%. The transparent electrode also showed very low sheet resistance with high flexibility. We have further developed an anti-oxidation coating layer by using a tetraethyl orthosilicate-poly trimethyloxyphenylsilane (TEOS-PTMS) slurry technique. It was confirmed that the transmittance and sheet resistance of the antioxidant film depends critically on the humidity of the film surface. We believe such Ag nanowire electrodes are a very promising next-generation transparent electrode technology that can be used in future flexible and transparent devices.

Fabrication of All-Solution Processed Transparent Silver Nanowire Electrode Using a Direct Printing Process

  • Baek, Jang-Mi;Lee, Rin;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.641-641
    • /
    • 2013
  • We report the transparentsilver nanowire electrode fabricated by a direct printing process, liquid-bridge-mediated nanotransfer molding. We fabricated silver nanowire arrays by liquidbridge- mediated nanotransfer molding using the silver nanoparticle ink and PEDOT:PSS polymer. Weinvestigated the formation of silver nanowire arrays by SEM and transmittance of the transparent silver nanowire electrode. We also measured the conductivity to confirm the potential of our approach.

  • PDF

Study on Electro Optic Characteristics of In-plane Switching Mode Liquid Crystal Display using Transparent Electrode

  • Song, Il-Sub;Baik, In-Su;Kim, Tae-Man;Lee, Seung-Hee;Kim, Do-Sung;Soh, Hoe-Sub;Kim, Woo-Yeol
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.18-24
    • /
    • 2004
  • Voltage-dependent transmittance characteristics associated with various cell parameters have been studied in-plane switching liquid crystal display when both common and pixel electrodes are transparent. When both electrodes are opaque, the transmittance is related to only the distance (I) between electrodes. However, where transparent electrode is used, it is influenced not only the 1but also an electrode width (w) and rubbing angle. In addition, these factors are related to operating voltage which shows maximal transmittance. To maximize the light efficiency of the cell and obtain low operating voltage, the above-mentioned cell parameters need to be optimized.