• Title/Summary/Keyword: Transmucosal delivery

Search Result 9, Processing Time 0.024 seconds

Transmucosal Delivery of Luteinizing Hormone Releasing Hormone(LHRH): Evaluation of Membrane Permeability Enhancement of $[D-Ala^6]$ LHRH in Rabbit Mucosa and Ovulation Inducing Effect in Vaginal Administration of Rat by the Addition of Several Absorption Enhancers (황체호르몬 유리호르몬의 경점막 수송: 수종의 흡수촉진제를 사용한 $[D-Ala^6]$ LHRH의 점막투과촉진 및 흰쥐에 있어서의 배란유도효과 향상)

  • Han, Kun;Jeong, Nam-Joo;Park, Jeong-Sook;Park, Hee-Beom;Chung, Youn-Bok;Moon, Dong-Cheul
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.440-450
    • /
    • 1994
  • Due to the limited bioavailability of $[D-Ala^6]$LHRH from nonparenteral transmucosal sites of administration, enhancement of mucosal permeability by coadministration of several protease inhibitors and/or penetration enhancers were studied in rabbit mucosa. As a reliable bioassay method for $[D-Ala^6]$LHRH, ovulation-inducing effect were measured after vaginal administration in the rat. The permeation of $[D-Ala^6]$LHRH through the mucosal membrane of rabbit mounted on George-Grass diffusion cells were examined in the presence of polyoxyethylene 9-lauryl ether (POE), ${\beta}$-cyclodextrin$({\beta}-CyD)$ or ethylene diamine tetra acetate disodium salt(EDTA). The vaginal membrane showed higher permeability of $[D-Ala^6]$LHRH than the rectal and nasal membrane. POE and ${\beta}-CyD$ showed a small promoting effect on the membrane permeation of $[D-Ala^6]$LHRH, but EDTA showed significant enhancement. Ovaluation was enhanced by the coadministration of sodium laurate(0.5%), a protease inhibitor but was not enhanced by EDTA, a penetration enhancer. On the other hands, coadministration of sodium tauro 24,25 dihydrofusidate(1%) and EDTA(2%) enhanced the ovulation inducing-effect 2.8 times. These results suggest that the vaginal administration of $[D-Ala^6]$LHRH with STDHF or sodium laurate as a protease inhibitor, and EDTA as a penetration enhancer, may become an elective method for transmucosal delivery of $[D-Ala^6]$ LHRH.

  • PDF

Transmucosal Delivery of Luteinizing Hormone-Releasing Hormone: Effect of Medium Chain Fatty Acid Salts on Stabilization of LHRH in Mucosal Homogenates in vitro. (황체호르몬 유리호르몬의 경점막 수송: 가토 점막균질액 중에서 중쇄지방산염의 LHRH에 대한 안정화 효과)

  • Han, Kun;Park, Jeong-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.67-77
    • /
    • 1994
  • In order to investigate the feasibility of transmucosal delivery of the model peptide, LHRH, metabolism of LHRH and inhibition effect of medium chain fatty acid salts were studied in rabbit mucosal homogenate. LHRH incubated in homogenates of rectal(RE), nasal(NA) and vaginal(VA) mucosa were assayed by HPLC. Five to six degradation products of LHRH were deterted and the degradation of LHRH$(500\;{\mu}g/ml)$ followed the first order kinetics. The main degradation products were found as $LHRH^{1-5}(M-I)$, $LHRH^{1-3}(M-II)$ and $LHRH^{1-6}(M-III)$ by the method of amino acid analysis. The half-lives of LHRH in the mucosal homogenates were found to be less than 20 min at protein concentration of 2.5 mg/ml with the order of VA>NA>RE mucosal homogenate. Medium chain fatty acid salts such as sodium caprylate $(C_8)$, sodium caprate $(C_{10})$ and sodium laurate $(C_{12})$ at the concentration of $0.5%{\sim}1.0%$ inhibit the proteolysis of LHRH significantly. The addition of sodium laurate(0.5%) into the NA and VA mucosal homogenates protected LHRH completely from the degradation.

  • PDF

Enhanced Transmucosal Permeation of Thyrotropin-releasing Hormone (치로트로핀 유리 호르몬의 점막 투과 증진)

  • 전인구;신동원
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.263-270
    • /
    • 1999
  • The in vitro permeation of thyrotropin-releasing hormone (TRH) through rabbit nasal, rectal and duodenal mucosae was studied in the absence and presence of an enzyme inhibitor and permeation enhancer. TRH in the donor and receptor solutions was assayed by HPLC. When thimerosal (TM, 0.5 mM) was added to the donor cell as an inhibitor, the permeation rate of TRH (200 $\mu\textrm{g}$/ml) increased linearly as a function of time. Fluxes of TRH through the nasal, rectal and duodenal mucosae were found to be 33.3$\pm$5.9, 11.8$\pm$1.9 and 9.6$\pm$0.7 $\mu\textrm{g}$/$\textrm{Cm}^2$/hr, respectively. The addition of sodium glycocholate, glycyrrhizic acid ammonium salt, sodium taurodihydrofusidate or L-$\alpha$-lysophosphatidylcholine to the donor solution containing TM did not result in the significant increase of permeation flux except for the duodenal mucosa, comparing with that in the presence of TM alone. Consequently, it was suggested that the nasal route was advantageous for systemic delivery of TRH, and the addition of TM and/or an enhancer was necessary to maximize the transmucosal permeation of TRH.

  • PDF

Percutaneous absorption Characteristics of Anti hyperlipidemia Gel Ointment using Fibric acid (Fibric acid를 이용한 항고지혈증 겔 연고의 경피 흡수 특성)

  • Jung, Duck-Chae;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • New biological treatments were being developed at a record place, but their potential could be compromised by a significant obstacle: the delivery of these drugs into a body. Pharmaceutical delivery is now nearly as important as product. New systems are being developed, and Drug Delivery Markets Series cover these new systems. Transdermal Delivery System(TDS) is often used as a method of drug dosage into the epidermic skin. An approach used to delivery drugs through the skin for therapeutic use as an alternative to oral, intravascular, subcutaneous and transmucosal routes. Various transdermal drug delivery technologies are described including the use of suitable formulations, carriers and penetration enhancers. The most commonly used transdermal system is the skin patch using various types of technologies. Compared with other methods of dosage, it is possible to use for a long term. It is also possible to stop the drug dosage are stopped if the drug dosage lead to side effect. Polysaccharides, such as karaya gum and glucomannan, were selected as base materials of TDS. Also, these polymers were characterized in terms of enhancers, drug contents. Among these polysaccharide, the permeation rate of karaya gum matrix was fastest in fibric acid(ciprofibrate) such as lipophilic drug in vitro. We used glycerin, PEG400 and PEG800 as enhancers. Since dermis has more water content(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when PEG400 was more effective for lipophilic drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate. Especially, this result suggests a possible use of polysaccharide gel ointment matrix as a transdermal delivery system of anti-hyperlipoproteinemic agent.

Degradation and Stabilization of $[D-Ala^2]-Methionine$ Enkephalinamide in Various Rabbit Mucosa Extracts (토끼의 수종 점막 추출액중 $[D-Ala^2]-Methionine$ Enkephalinamide의 분해 및 안정화)

  • Chun, In-Koo;Yang, Yoon-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.173-183
    • /
    • 1992
  • To study the feasibility of transmucosal delivery of $[D-ala^2]-methionine$ enkephalinamide (YAGFM), its enzymatic degradation and stabilization in various rabbit mucosal extracts were investigated by HPLC method. The degradation of YAGFM was observed to follow the first-order kinetics and the half-lives of YAGFM in the nasal, rectal and vaginal mucosal extracts were found to be 25.7, 3.0 and 7.8 hr, respectively. However, there was no significant difference in degradation rates of YAGFM between the mucosal and serosal extracts obtained from the same mucosal membrane. This finding suggests that even a synthetic enkephalin analog, which is designed to be resistent to aminopeptidases, needs to be fully protected from the enzymatic degradation in mucosal sites for the delivery of the analog through mucosal routes. To inhibit the degradation of YAGFM in various mucosal extracts, effects of enzyme inhibitors such as bestatin (BS), amastatin (AM), thiorphan (TP), thimerosal (TM) and EDTA, alone or in combination, and modified cyclodextrins were observed by assaying YAGFM staying intact during 24 hr-incubation at $37^{\circ}C$. It was found from the results that mixed inhibitors such as TM (0.5 mM)/EDTA (5 mM) or AM $(50{\mu}M)/TM$ (0.5 mM)/EDTA (5 mM) provided very useful means for the stabilization in various mucosal extracts. The latter was found to protect YAGFM from the degradation in the nasal, rectal, and vaginal mucosal extracts by 90.9, 90.4 and 91.3%, respectively, after 24 hr-incubation, suggesting almost complete inhibition of YAGFM-degrading enzymes present in the incubation mixture. However, BS $(50{\mu}M)$, AM 50 $(50{\mu}M)$ or TP$(50{\mu}M)$ alone did not reveal sufficient inhibition except TM (0.5 mM) or EDTA (5 mM). The adddition of $2-hydroxylpropyl-{\beta}-cyclodextrin$(10%) to the nasal mucosal extract, and $dimethyl-{\beta}-cyclodextrin$(10%) to the rectal and vaginal mucosal extracts reduced the first-order rate constants for the degradation of YAGFM by 5.8, 17.3 and 8.9 times, respectively, compared to those with no additive.

  • PDF

Stability of [D-Ala$^2$]-Methionine Enkephalinamide in Aqueous Solution (수용액중 [D-알라$^2$-메치오닌엔케팔린아미드의 안정성)

  • 전인구;양윤정;이치호
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.31-36
    • /
    • 1993
  • To evaluate the feasibility of transmucosal delivery of methionine enkephalin analog, [$D-Ala^2$]-me-thionine enkephalinamide (YAGFM), the influence of pH, temperature, ionic strength and initial peptide concentration on the physicochemical stability of YAGFM in aqueous buffered solutions were investigated using a stability-indicating HPLC method. The degradation of YAGFM followed the pseudo-first-order kinetics. From the pH-rate profile, the maximum stability of YAGFM was shown to be at the pH of about 5.0. The halflife for the degradation of YAGFM was found to be 181.3 days at pH 5.0 and $37^{\circ}C.$ Arrhenius plots of the data obtained at 25~$45^{\circ}C$ were reasonably linear with a correlation coefficient greater than 0.99, and the activation energy was calculated to be 8.9 kcal/mole. A higher ionic strength and/or a higher peptide concentration in buffered solutions retarded the degradation of YAGFM.

  • PDF

Physicochemical Stability of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Buffered Aqueous Solution (완충 수용액중 로이신엔케팔린 및 [D-알라$^2]$-로이신엔케팔린아미드의 물리화학적 안정성)

  • Park, In-Sook;Chun, In-Koo
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.488-495
    • /
    • 1994
  • To evaluate the feasibility of transmucosal delivery of leucine enkephalin (Leu-Enk) and its synthetic analog, $[D-Ala^2]$-leucine enkephalinamide (YAGFL), their physicochemical stabilities in aqueous buffered solutions were first investigated using a stability indicating high performance liquid chromatography. The degradation of Leu-Enk and YAGFL followed the pseudo-first-order kinetics. From the pH-rate profiles, it was found that the maximal stability of the two pentapeptides was at the pH of about 5.0. The shelf lives $(t_{90%})$ for the degradation of Leu-Enk and YAGFL at pH 5.0 and $40^{\circ}C$ were found to be 48.13 and 50.9 days, respectively. From the temperature dependence of the degradation, activation energies for Leu-Enk and YAGFL were calculated to be 13.61 and 13.47 kcal/mole, respectively. A higher ionic strength and a higher initial peptide concentration in buffered solution slowed the degradation of the two pentapeptides. The addition of 2-hydroxypropyl-${\beta}$-cyclodextrin into the peptide solution did not affect the stability significantly.

  • PDF

Transmucosal Delivery of Luteinizing Hormone-Releasing Hormone(LHRH): Enzymatic Proteolysis of $[D-Ala^6]$ LHRH and Inhibitory Effect of Medium Chain Fatty Acid Salts in Rabbit Mucosa (황체호르몬 유리호르몬(LHRH)의 경점막 수송: 토끼 점막균질액 중에서 $[D-Ala^6]$ LHRH의 효소적 분해 특성 및 중쇄지방산염의 안정화 효과)

  • Park, Jeong-Sook;Chung, Youn-Bok;Han, Kun
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.202-210
    • /
    • 1994
  • To investigate the feasibility of mucosal delivery of $[D-Ala^6]$ LHRH, a potent analogue of LHRH, enzymatic proteolysis of $[D-Ala^6]$ LHRH and inhibitory effect of medium chain fatty acid salts(MFA) were studied using rabbit mucosal homogenate. $[D-Ala^6]$ LHRH incubated in homogenates of rectal(RE), nasal(NA) and vaginal(VA) mucosa were assayed by HPLC. The degradation of $[D-Ala^6]$ LHRH followed the first order kinetics. The degradation products were found as $[D-Ala^6]$ $LHRH^{1-7}$(m-i), to a lesser extent, $[D-Ala^6]$ $LHRH^{1-9}$(m-ii) and $[D-Ala^6]$ $LHRH^{1-3}$(m-iii) by the method of amino acid analysis(PITC method). The formation of$[D-Ala^6]$ $LHRH^{1-7}$ was not inhibited by the addition of disodium ethylenediaminetetraacetic acid but inhibited by sodium tauro-24,25-dihydrofusidate, suggesting that endopeptidase 24.11(EP 24.11) cleaves the $Leu^7-Arg^8$ bond of $[D-Ala^6]$ LHRH and is the primary $[D-Ala^6]$ LHRH degrading enzyme. The patterns of $[D-Ala^6]$ LHRH degradation indicated that EP 24.11 exists in each mucosal homogenate with the order of RE>NA>VA. MFA significantly inhibited the proteolysis of $[D-Ala^6]$ LHRH. The addition of sodium caprate(1.0%) or sodium laurate(0.5%) to the each mucosal homogenate completely protected $[D-Ala^6]$ LHRH from the degradation.

  • PDF

Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosa Extracts (토끼의 수종 점막 추출액중 로이신엔케팔린 및 [D-알라$^2]$-로이신엔케팔린아미드의 효소적 분해 특성)

  • Chun, In-Koo;Park, In-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.530-543
    • /
    • 1994
  • To study the feasibility of transmucosal delivery of leucine enkephalin (Leu-Enk) and $[D-ala^2]$-leucine enkephalinamide (YAGFL), their degradation extents and pathways in various rabbit mucosa extracts were investigated by high performance liquid chromatography. The degradation of Leu-Enk and YAGFL was observed to follow the first-order kinetics. The degradation half-lives of Leu-Enk in the nasal, rectal and vaginal mucosal extracts were 1.62, 0.37 and 1.12 hrs and those of YAGFL were 30.55, 9.70 and 6.82 hrs, respectively, indicating Leu-Enk was degraded in a more extensive and rapid manner than YAGFL. But the mucosal and serosal extracts of the same mucosa showed the similar degradation rates for both pentapeptides. The degradation was most rapid in the neutral pH and increasing concentrations of substrates retarded the degradation rates. The maior hydrolytic fragments of Leu-Enk were Des-Tyr-Leu-Enk and tyrosine, indicating the enzymatic hydrolysis by aminopeptidases. However, the data also suggested endopeptidases such as dipeptidyl carboxypeptidase and dipeptidyl aminopeptidase could play some role in the degradation of Leu-Enk. On the other hand, the hydrolytic fragments of YAGFL in all the mucosa extracts were mainly Tyr-D-Ala-Gly and Phe-Leu-Amide, demonstrating the hydrolytic breakdown by endopeptidases. The degradation pathways were further explored by concomitantly determining the formation of smaller metabolites of primary hydrolytic fragments of Leu-Enk and YAGFL in the mucosa extracts.

  • PDF