• Title/Summary/Keyword: Transmitted light

Search Result 295, Processing Time 0.029 seconds

THE NONDESTRUCTIVE MEASUREMENT OF THE SOLUBLE SOLID AND ACID CONTENTS OF INTACT PEACH USING VIS/NIR TRANSMITTANCE SPECTRA

  • Hwang, I.G.;Noh, S.H.;Lee, H.Y.;Yang, S.B.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.210-218
    • /
    • 2000
  • Since the SSC(soluble solid contents) and titratable acidity of fruit are highly concerned to the taste, the need for measuring them by non-destructive technology such as NIR(Visual and Near-infrared) spectroscopy is increasing. Specially, in order to grade the quality of each fruit with a sorter at sorting and packing facilities, technologies for online measurement satisfying the tolerance in terms of accuracy and speed should be developed. Many researches have been done to develop devices to measure the internal qualities of fruit such as SSC, titratable acidity, firmness, etc. with the VIS(Visual)/NIR(Near Infrared) reflectance spectra. The distributions of the SSC, titratable acidity, firmness, etc. are different with respect to the position and depth of fruit, and generally the VIS/NIR light can interact with fruit in a few millimeters of pathlength, and it is very difficult to measure the qualities of inner flesh of fruit. Therefore, to measure the average concentrations of each quality factor such as SSC and titratable acidity with the reflectance-type NIR devices, the spectra of fruit at several positions should be measured. Recently, the interest about the transmittance-type VIS/NIR devices is increasing. NIR light can penetrate through the fruit about 1/10-1/1,000,000 %. Therefore, very intensive light source and very sensitive sensor should be adopted to measure the transmitted light spectra of intact fruit. The ultimate purpose of this study was to develop a device to measure the transmitted light spectra of intact fruit such as apple, pear, peach, etc. With the transmittance-type VIS/NIR device, the feasibility of measurement of the SSC and titratable acidity in intact fruit cultivated in Korea was tested. The results are summarized as follows; A simple measurement device which can measure the transmitted light spectra of intact fruit was constructed with sample holder, two 500W-tungsten halogen lamps, a real-time spectrometer having a very sensitive CCD array sensor and optical fiber probe. With the device, it was possible to measure the transmitted light spectra of intact fruit such as apple, pear and peach. Main factors affecting the intensity of transmitted light spectra were the size of sample, the radiation intensity of light source and the integration time of the detector. Sample holder should be designed so that direct light leakage to the probe could be protected. Preprocessing method to the raw spectrum data significantly influenced the performance of the nondestructive measurement of SSC and titratable acidity of intact fruit. Representative results of PLS models in predicting the SSC of peach were SEP of 0.558 Brix% and R2 of 0.819, and those in predicting titratable acidity were SEP of 0.056% and R2 of 0.655.

  • PDF

Implementation of Transceiver for Optical Wireless Communication System (광무선통신 시스템의 송수신기 구현)

  • Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • In this paper, a transceiver of VLC (Visible Light Communication) using LED white lighting has been implemented. The transmitted waveforms of LED and PD (Photo Diode) of the received signal are analyze to restore VLC data. Audio signal was successfully transmitted to demonstrate possibility and potential of optical wireless communication systems. Various modulation formats are considered to evaluate and compare performance in diverse channel conditions.

Visible Light Communication Systems for Sensor Networks Using Synchronizing Pulse Transmission Through the Power Lines (전력선 전송 동기신호를 이용한 센서 네트워크용 가시광통신시스템)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.212-218
    • /
    • 2013
  • In this paper, we introduce a new method to reduce the inter-channel crosstalk in visible light communication (VLC) systems using the synchronizing pulses transmitted through the power lines. Synchronizing pulses are simultaneously transmitted to multiple VLC transmitters and receivers through the 220V power line. Each VLC transmitter modulates an LED and each VLC receiver demodulates the signal light in the time slot that is allocated with reference to the synchronizing pulses. This method is very simple and effective to prevent the inter-channel crosstalk in VLC systems for sensor networks because every VLC system can easily get the synchronizing pulses from the nearby power line.

Monte Carlo Simulation on Light Distribution in Turbid Material (혼탁매질에서 광분포에 관한 Monte Carlo 시뮬레이션)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 1998
  • The propagation of light radiation in a turbid medium is an important problem that confronts dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. Scattered light is measured as a function of the position(distance r, depth z) between the axis of the incident beam and the detection spot. Turbid sample yields a very forward-directed scattering pattern at short range of position from source to detector, whereas the thicker samples greatly attenuated the on-axis intensity at long range of position. The portions of scattered light reflected from or transmitted throughphantom depend upon internal reflectance and absorption properties of the phantom. Monte Carlo simulation method for modelling light transport in tissue is applied. It uses the photon is moved a distance where it may be scattered, absorbed, propagated, internally reflected, or transmitted out of tissue. The photon is repeatedly moved until it either escape from or is absorbed by the phantom. In order to obtain an optimum therapeutic ratio in phantom material, optimum control the light energy fluence rate is essential. This study is to discuss the physical mechanisms determining the actual light dose in phantom. Permitting a qualitative understanding of the measurements. It may also aid in designing the best model for laser medicine and application of medical engineering.

Simultaneous measurements of red blood cell aggregation and blood viscosity in a slit rheometry with light transmission analysis (광 투사법을 이용한 슬릿 점도계에서의 적혈구 응집성 및 점도 측정에 관한 연구)

  • Park, Myung-Su;Ku, Yun-Hee;Shin, Se-Hyun;Suh, Jang-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1678-1681
    • /
    • 2004
  • The light-transmission technique has been applied to a slit rheometer for measuring red blood cell aggregation as well as blood viscosity over a range of shear rates. For measurement of blood viscosity and aggregation, instantaneous pressure and transmit-light intensity are measured with time. Using a precision pressure measurement, one can determine the shear stress and shear rate. In addition, a transmitted light through a blood sample indicates degree of RBC aggregation. With abruptly flowing with high shear rate, RBCs rapidly disaggregate and the intensity of the transmitted light becomes low. When continuously flowing with decreasing shear rate, RBCs tend to re-aggregate and the corresponding transmit-intensity gradually increases with time. The light intensity as a degree of RBC aggregation is plotted against shear rate and compared with blood viscosity. The advantages of this design are dual measurement at a time, simplicity, i.e., ease of operation and no moving parts, low cost, short operating time, and the disposable kit which is contacted with blood sample.

  • PDF

Demodulation of FBG and Acoustic Sensors Embedded in a Fiber-Optic Sagnac Loop (광섬유 사낙간섭계에 삽입된 광섬유격자센서와 음향센서의 복조)

  • Kim, Hyun-Jin;Lee, June-Ho;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.44-50
    • /
    • 2012
  • When the fiber Bragg gratings are embedded in a fiber-optic Sagnac loop for measuring temperature or strain, it is difficult to separate the Bragg wavelengths. The transmitted light is mixed with the reflected Bragg wavelengths in the photo-detector, working as noises. To suppress the noises, we placed the FBG sensors and a fiber-optic attenuator at asymmetric positions in the loop. With the arrangement the reflected light became much bigger than the transmitted light, enabling the separation of the reflected Bragg wavelengths with almost the same signal-to-noise ratio of the FBG sensors outside the loop.

Effect of Grape-Bagging Paper Properties on Saccharinity of Grape (포도 당도에 영향하는 포도 재배용 봉지의 특성 효과)

  • 이장호;박종문;이진호;유병철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.52-58
    • /
    • 2001
  • The aim of using grape-bagging paper is preventing damages by light and harmful insects during grape growth. The number of using grape-bagging paper has been increasing because advantages of using it have been confirmed. A technology to produce it has not been fully developed yet. In this study properties of the grape-bagging paper were analyzed. Results showed that air-permeability and transmitted light of grape-bagging paper were important. It was tried to see the influence of paper structure on air-permeability, transmitted light and the grapes saccharinity. For making different structure of grape-bagging paper, papers were produced with different freeness levels at several pressure conditions. Coloration time of Campbell grape with new bagging paper started about 5 days earlier than that with usual bagging paper, It was also possible to improve the saccharinity about 0.1-N0.8 Brix. Because new bagging paper has a low apparent density, it affected the saccharinity and coloration time of grape.

  • PDF

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1627-1627
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M^{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima t and the variation of full width at half maximum w were strongly dependent on the detection position and the wavelength of the laser beam. At, t and w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1626-1626
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M_{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima $\Delta$t and the variation of full width at half maximum Δw were strongly dependent on the detection position and the wavelength of the laser beam. At, $\Delta$t and $\Delta$w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

VLC-based ESL system design for interference avoidance in 2.4GHz ISM band (2.4GHz ISM 대역의 간섭회피를 위한 VLC 기반 ESL 시스템 설계)

  • Lee, Sang-gwon;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.636-637
    • /
    • 2018
  • The electronic shelf label(ESL) system based on wireless communication can reduce waste of disposable paper, reduce labor force and update real time information. However, the environment in which a large number of ESL modules are installed is exposed to interference from radio frequency(RF) communications in the Industry-Science-Medical(ISM) band. In this paper, we propose an ESL system based on visible light communication to avoid congestion of ESL system using ISM band. In the proposed system, the goods information and ID transmitted from the administrator server are transmitted in the ESL Tag, and the ESL Tag identifies the ID and displays the product information. Experiments show that ESL system using visible light communication is possible.

  • PDF