• Title/Summary/Keyword: Transmitted light

Search Result 295, Processing Time 0.027 seconds

Effects of LED on Emotion-Like Feedback of a Single-Eyed Spherical Robot

  • Onchi, Eiji;Cornet, Natanya;Lee, SeungHee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.3
    • /
    • pp.115-124
    • /
    • 2021
  • Non-verbal communication is important in human interaction. It provides a layer of information that complements the message being transmitted. This type of information is not limited to human speakers. In human-robot communication, increasing the animacy of the robotic agent-by using non-verbal cues-can aid the expression of abstract concepts such as emotions. Considering the physical limitations of artificial agents, robots can use light and movement to express equivalent emotional feedback. This study analyzes the effects of LED and motion animation of a spherical robot on the emotion being expressed by the robot. A within-subjects experiment was conducted at the University of Tsukuba where participants were asked to rate 28 video samples of a robot interacting with a person. The robot displayed different motions with and without light animations. The results indicated that adding LED animations changes the emotional impression of the robot for valence, arousal, and dominance dimensions. Furthermore, people associated various situations according to the robot's behavior. These stimuli can be used to modulate the intensity of the emotion being expressed and enhance the interaction experience. This paper facilitates the possibility of designing more affective robots in the future, using simple feedback.

Analysis and Monitoring of Environmental Parameters in a Single-span Greenhouse during Strawberry Cultivation

  • Park, Minjung;Kang, Taegyeong;Yun, Sung-wook;Lim, Ryugap;Son, Jinkwan;Kang, Donghyeon
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.907-914
    • /
    • 2021
  • In this study, strawberry cultivation environment in a greenhouse located in Jeonju was monitored and internal environmental parameters were analyzed. Temperature, humidity, RAD, and PPF sensors were installed to monitor environmental conditions in the test greenhouse. Data were collected every 10 minutes during four winter months from sensors placed across the greenhouse to assess its permeability and environmental uniformity. Temperature and humidity inside the greenhouse were relatively uniform with negligible deviations among the center, south, and north; however, it was judged that further analysis of gradients of these parameters from the east to the west of the greenhouse would be needed. Both RAD (Total solar radiation) and PPF (Photosynthetic photon flux) had high values on the south and were low on the north and the reduction rate of these parameters was 54% and 61%, respectively, indicating that a significant amount of light could not be transmitted. This implied a significant decrease in the amount of light entering the greenhouse during winter. Therefore, it is concluded that environmental control devices and auxiliary lighting are needed to achieve uniform greenhouse environment for efficient strawberry cultivation.

Vehicle Visible Light Communication System Utilizing Optical Noise Mitigation Technology (광(光)잡음 저감 기술을 이용한 차량용 가시광 통신시스템)

  • Nam-Sun Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.413-419
    • /
    • 2023
  • Light Emitting Diodes(LEDs) are widely utilized not only in lighting but also in various applications such as mobile phones, automobiles, displays, etc. The integration of LED lighting with communication, specifically Visible Light Communication(VLC), has gained significant attention. This paper presents the direct implementation and experimentation of a Vehicle-to-Vehicle(V2V) Visible Light Communication system using commonly used red and yellow LEDs in typical vehicles. Data collected from the leading vehicle, including positional and speed information, were modulated using Non-Return-to-Zero On-Off Keying(NRZ-OOK) and transmitted through the rear lights equipped with red and yellow LEDs. A photodetector(PD) received the visible light signals, demodulated the data, and restored it. To mitigate the interference from fluorescent lights and natural light, a PD for interference removal was installed, and an interference removal device using a polarizing filter and a differential amplifier was employed. The performance of the proposed visible light communication system was analyzed in an ideal case, indoors and outdoors environments. In an outdoor setting, maintaining a distance of approximately 30[cm], and a transmission rate of 4800[bps] for inter-vehicle data transmission, the red LED exhibited a performance improvement of approximately 13.63[dB], while the yellow LED showed an improvement of about 11.9[dB].

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Signl processing method and diagnostic algorithm for arterial oxygen-saturation measument (산소포화도 측정을 위한 신호처리방법 및 계산 알고리즘)

  • 김수진;황돈연;전계진;이종연;정성규;윤길원
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.452-456
    • /
    • 2000
  • A measurement unit and signal processing algorithm have been developed for predicting arterial oxygen saturation noninvasively. The measurement set-up was composed of a probe including light source and photodetector, optical signal processing section, LED driving circuit, PC interface software for data acquisition and data processing software. Light from the LED's was irradiated onto the finger nail bed and transmitted light was measured at different wavelengths. An effective baseline correction method was developed and measured data were analyzed by using various data processing methods and prediction algOlithms. For performance evaluation, a pulse oximeter simulator (Bio- Tek Instrument Inc.) was used as reference. The best performance in terms of the correlation coefficient and the standard deviation was obtained under the following conditions; when the arterial signals were computed in terms of area rather than peak-valley difference, and when the algorithm calculating by $In(I_p/I_v)/I_{avr}$ value for pulsation waveform was used. In in vivo test, prediction was improved when the developed baseline correction method was used. In addition, wavelengths of 660 nm and 940 nm provided better linearity and precision than wavelengths of 660 nm and 805 nm. 05 nm.

  • PDF

Indoor Surveillance Camera based Human Centric Lighting Control for Smart Building Lighting Management

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Mariappan, Vinayagam;Lee, Min Woo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.207-212
    • /
    • 2020
  • The human centric lighting (HCL) control is a major focus point of the smart lighting system design to provide energy efficient and people mood rhythmic motivation lighting in smart buildings. This paper proposes the HCL control using indoor surveillance camera to improve the human motivation and well-beings in the indoor environments like residential and industrial buildings. In this proposed approach, the indoor surveillance camera video streams are used to predict the day lights and occupancy, occupancy specific emotional features predictions using the advanced computer vision techniques, and this human centric features are transmitted to the smart building light management system. The smart building light management system connected with internet of things (IoT) featured lighting devices and controls the light illumination of the objective human specific lighting devices. The proposed concept experimental model implemented using RGB LED lighting devices connected with IoT features open-source controller in the network along with networked video surveillance solution. The experiment results are verified with custom made automatic lighting control demon application integrated with OpenCV framework based computer vision methods to predict the human centric features and based on the estimated features the lighting illumination level and colors are controlled automatically. The experiment results received from the demon system are analyzed and used for the real-time development of a lighting system control strategy.

Walking Assistance Device for Prevention of Accidents of Visually Impaired People (시각장애인의 사고예방을 위한 다기능 보행 보조 장치)

  • Sim, Jae-Man;Lee, Hyeong-Wook;Shin, Joo-Yong;Kim, Ki-Won;Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1241-1248
    • /
    • 2019
  • In this paper, an auxiliary device was implemented to help blind people more safely from obstacles or risk factors while walking. The ultrasonic sensors detect obstacles in the front, so that the noise gap and the vibration intensity of the buzzer can be heard differently by distance and angle, and so the situation can be perceived by pedestrians. When the ambient light becomes darker than the light intensity set using the CdS resistance value of the light sensor, the LED automatically turns on, makes it easier for pedestrians to recognize the position of the auxiliary device through buzzer if the pedestrian misses the aid using the gyro sensor's slope. Moreover, the location and situation of the blind were transmitted to the caregiver to check safety and behavior using GPS and Bluetooth.

Ultraviolet Wave Length Effective in the Sporulation of Didymella bryoniae, a Gummy Stem Blight Fungus in Cucurbits, and the Disease Control Effect by the Use of Ultraviolet Light-Absorbing Vinyl Film (박과작물 덩굴마름병권 Didymella bryoniae의 포자형성 유효 자외파장과 자외선 흡수필름을 이용한 병 방제효과)

  • 권미경;홍정래;기운계;조백호;김기청
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.20-26
    • /
    • 1999
  • Ultraviolet light is required for the sporulation of Didymella bryoniae, a gummy stem blight fungus in cucurbits such as watermelon, melon, oriental melon, cucumber and pumpkin. In this experiment, the upper limit of wave length for the production of pycnidia of D. bryoniae was 365 nm - 375 nm. Two plastic houses were covered with either common transparent film (wave length longer than 225 nm is transmitted) or UV-absorbing film ( wave lenght shorter than 388 nm is absorbed). In both houses, seedlings inoculated with D. bryoniae were placed in the center of the house at 30 days after transplantation of watermelon (cv. Whanhoseong), and the disease incidences between the houses were compared until 80 days after transplantation. The number of disease lesions and incidence of pycnidia-producing lesions under the UV-absorbing film were reduced by 90% and 80%, respectively, compared to the common transparent film. The internode lengths of plants grown in the two houses were not significantly different, but the plants grown under the UV-absorbing film had longer vines and more leaves than plants under the common transparent film. However, fruit characters such as weight, length, width, rind thick and brix, were not different between the two houses. Occurrence of aphids was reduced in the UV-absorbing film, but those of mites or diseases (powdery mildew and sooty mold) were not different between the houses. These results suggest that disease incidence of gummy stem blight of watermelon in the greenhouse can be controlled by the use of UV-absorbing film.

  • PDF

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

Algorithm for reduction of motion artifact generated in SpO2 measurement (산소포화도(SpO2) 측정시에 발생되는 motion artifact를 reduction하는 algorithm)

  • 한승헌;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.860-863
    • /
    • 2003
  • Pulse oximetry has gained wide spread clinical acceptance in the latter part of the 21st century. The principle of pulse oximetry is based on the red and infrared light absorption features and uses a light emitter with red and infrared LEDs that shines through a reasonably translucent site with good blood flow. There are two methods of sending light through the measuring site : transmission and reflectance. After the transmitted red and infrared signals pass through the measuring site and received at the photodetector, the red/infrared ratio is calculated. But, pulse of oximeters are so sensitive that they may detect pulses when pressure is too low to provide adequate tissue blood flow, that is, SpO2 may decrease due to O2 consumption by the finger of the pulsing but stagnant arterial blood at low pressure or with vasoconstriction. This project has the limitations of pulse oximetry. Therefore, this paper is focused on the resuction of motion artifact that caused by moving when someone measures with SpO2 system.

  • PDF