• 제목/요약/키워드: Transmitted dose

검색결과 57건 처리시간 0.023초

Ir-192 $\gamma$선(線)의 금속(金屬)에 대(對)한 산란분포(散亂分布)에 관(關)한 연구(硏究) (A Study on Scattering Distribution in Metal of Ir-192 Gamma-Ray)

  • 주광태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제4권1호
    • /
    • pp.63-71
    • /
    • 1981
  • The metal-plates(Aluminium. Copper, Lead) of change the variation thickness have been penetrated by the collimated beam($450mm{\times}4mm{\phi}$) of Gamma-ray from $^{192}Ir$. Then, the scattered $\gamma$-ray dose in variable angle and the directly transmitted $\gamma$-ray dose were measured using the electrometer of ionization chamber. The results were summarized as follows: 1. Obtained the mass attenuation coefficients of $Al;0.0937cm^2g^{-1},\;Cu;0.0937cm^2g^{-1},\;pb;0.244cm^2g^{-1}$. 2. Total intensity of front scattered $\gamma$-ray follow the order of Al>Cu>pb. 3. The scattered $\gamma$-ray intensity with the lager angle of scattering was saturated after increase rapidly, and the scattering angle of the more larger was decreased. 4. The scattered $\gamma$-ray intensity through plates of aluminium or copper was saturated after increase with thicker scatterer, and the intensity was decreased at the more thicker. But the variation of scattered $\gamma$-ray dose in the lead plate made the fewest than Al and Cu. 5. The ratio of the scattered $\gamma$-ray dose and the directly transmitted $\gamma$-ray dose was saturated after increase with the thicker scatterer, and the scatterer of the more thicker was decreased. Degree of total intensity in these ratios was followed the order of Cu>Al>Pb.

  • PDF

연(鉛)필터의 투과선량을 이용한 15 MV X선의 에너지스펙트럼 결정과 조직선량 비교 (Compare the Clinical Tissue Dose Distributions to the Derived from the Energy Spectrum of 15 MV X Rays Linear Accelerator by Using the Transmitted Dose of Lead Filter)

  • 최태진;김진희;김옥배
    • 한국의학물리학회지:의학물리
    • /
    • 제19권1호
    • /
    • pp.80-88
    • /
    • 2008
  • 최근의 방사선 치료선량 계획시스템은 대체로 커널빔을 컨볼루션하여 조직선량을 구하고 있다. 본 연구에서는 광자선 빔에 따른 심부선량과 임의의 깊이에서 프로파일 선량을 구하기 위하여 반복적 수치해석을 통해 투과 필터에 의한 감쇠선량으로부터 에너지 스펙트럼을 구성하였다. 실험은 15 MV X선(Oncor, Siemens사)과 이온선량계 0.125 cc (PTW T31010)을 이용하여 납필터를 투과한 선량을 측정하여 이루어졌다. 15 MV X선의 에너지스펙트럼은 0.25 MeV 간격으로 납필터 0.51 cm에서 8.04 cm의 감쇠선량으로 실측치와 비교하여 구하였다. 실험 연산에서 15 MV X선의 최대유량은 3.75 MeV에서 나타났으며, 평균에너지는 4.639 MeV를 보였으며, 투과선량은 평균 0.6%의 오차인 반면에 최대오차는 납두께 5 cm에서 2.5%를 보였다. 조직선량은 에너지에 크게 의존하므로, 평탄형 필터의 중심과 Tangent 0.075와 0.125인 가장자리의 에너지를 구하였으며, 각각 4.211 MeV와 3.906 MeV로 나타났다. 심부선량과 프로파일 선량은 상업화로 공급되고 있는 선량계획시스템에 중심 선속과 가장자리의 각 에너지스펙트럼을 적용하여 구하여 실측선량률과 비교하였다. 생성된 심부선량 곡선은 조사면 $6{\times}6cm^2$에서 $30{\times}30cm^2$까지 실측치와 비교한 결과 1% 이내의 거의 일치하는 값을 얻었으며, 프로파일 곡선은 $10{\times}10cm^2$에서 1% 이내의 오차를 보였으나, $30{\times}30cm^2$와 같이 큰 조사면의 얕은 깊이에서는 2%의 오차를 보였다. 따라서 투과선량을 연산으로 구한 에너지 스펙트럼이 조직선량을 평가하는 데 상당히 적은 오차범위 내에서 정량적이고 정성적으로 얻을 수 있음을 알 수 있다.

  • PDF

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • 한국의학물리학회지:의학물리
    • /
    • 제31권3호
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

X선촬영에 있어서 관전압과 피사체가 선질 및 선량에 미치는 영향의 실험 (Influence of X-ray Tube Voltage and Object on X-ray Quality and Dose)

  • 허준;김창균;강홍석;김정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제7권1호
    • /
    • pp.41-46
    • /
    • 1984
  • Authors investigated an influence of x-ray tube voltage on x-ray quality and dose with using objects of various thickness, and obtained the results as follows: 1. Radiographic effects were influenced by tube voltages and objects. 2. Dose decrement rates hade more influence upon primary-rays than total x-rays at lower tube voltages. 3. The quality of transmitted x-rays was affected by tube voltages and thickness of objects. 4. Scattered-ray contents were proportional to tube voltages with using grid.

  • PDF

압박대 재질 비교를 통한 유방촬영의 피폭선량 감소 방안 (Reduction of Exposure Dose of Mammography by Comparison of Compression Paddle Material)

  • 홍동희
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.455-460
    • /
    • 2019
  • This study compared the radiation transmission and image quality of polymethylmethacrylate (PMMA), polycarbonate (PC), and carbon, which are common components of the compression plates currently used during breast imaging. In addition to measuring the transmitted dose and the intensity without the use of a compression paddle, the four different compression paddles were evaluated according to the material and thickness of each paddle. Radiation transmittance, maximum intensity, and plot profile type w ere all evaluated for each material, and for each factor evaluated the follow ing order w as noted, from best to w orst: carbon 4 mm, PMMA 3 mm, PMMA 4 mm, and PC 4 mm. It is necessary to study a variety of materials and thicknesses in order to find the optimal combination of material and thickness, because not only does the material have a large influence in reducing the radiation exposure during mammography, but the thickness of the compression plate also has a great influence.

유방촬영(乳房撮影)의 방사선량(放射線量)에 관(關)한 연구(硏究) (A Study on Radiation Dose in Mammography)

  • 최종학;전만진;김영일;최종운
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제4권1호
    • /
    • pp.31-36
    • /
    • 1981
  • We studied radiation dose in mammography through 34-46 kv range using acryl phantom. The obtained results were as follows: 1. Incident radiation was maximum with high kvp and thin added filtration. 2. Transmitted radiation by acryl phantom and its thickness were in reciprocal relationship. 3. The acryl thickness to produce comparable film density with soft tissue of breast was 6 cm. 4. The X-ray exposure for comparable density radiographs increased mammographic film more than medical x-ray film and the amount of x-ray exposure was directly proportional to the added filtration of x-ray beam. 5. The surface dose of x-ray exposure needed to produce film density of 1.0 for 6cm acryl phantom was 1,084-1,575mR in mammographic film and 476-625 mR in medical x-ray film.

  • PDF

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • 제43권3호
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

X선촬영시(線撮影時) 연부조직(軟部組織) 두께에 따른 선량분포(線量分布)에 관(關)한 연구(硏究) (A Study on the Distribution of X-ray according to the Thickness of Soft Tissue in Radiography)

  • 박성옥
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제11권2호
    • /
    • pp.3-15
    • /
    • 1988
  • When X-rays were projected into a patient, there occured the phenomena such as penetration, absorption and scattering etc. The penetrating rays were recorded on films as X-ray image used for diagnosis but scattered rays caused the radiation hazard both to the patient, specialist and technicians. The soft tissue includes many organs which are sensitive to the radiation and in may occupy $40{\sim}50%$ of body weight. Therefore X-rays should be carefully projected to the patient and it is strongly recommended to analyse the distribution of X-rays, when ever the patient is exposed to X-rays. In this study, the distribution of X-ray according to the thickness, the radiation field and the tube voltages (kVp) in soft tissue, the following results were obtained: 1. Total transmitted rays which kept the step with X-ray tube voltage (kVp) increased in proportion to the increasing of X-ray tube voltage. 2. The scattered ray rate in the total transmitted ray was not significantly found with X-ray tube voltage. 3. The affecting factors of the scattered ray rate in total transmitted ray were shown through the radiation field and the thickness. 4. The dose of scattered ray by the angle was observed more in direction of primary ray ($0^{\circ}$) and back scattering ($160^{\circ}$) than in direction of $90^{\circ}$. 5. The more the distance from phantom to the patient should be less distribution of scattered ray.

  • PDF

국내의 철도 차량의 진동에 대한 인체 영향 조사 (Assessing the Effects of Vibration Transmitted by Domestic Train Health on Human)

  • 김진기;홍동표;최병재;정완섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.455-458
    • /
    • 2001
  • In this paper, ISO2631-1(1997) was used to assess the vibration and shock transmitted by train seat with respect to possible effects on human health. Evaluations have been performed on the seat acceleration measured in two type of train, Saemaulho and Mugunghwaho. For each train, limiting daily exposure durations were estimated by comparing the frequency weighted root mean square(i.e., r.m.s) acceleration and the vibration dose values(i.e., VDV), calculated according to ISO2631-1(1997) with exposure limits, health guidance caution zones.

  • PDF

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).