• Title/Summary/Keyword: Transmisson Error

Search Result 2, Processing Time 0.015 seconds

Analysis of Transmission Error for Stepping Motor Drive Timing Belt System (스테핑 모터 구동 타이밍벨트 시스템의 전동오차 해석)

  • Kim, Hyun-Soo;Wee, Hyuk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.649-657
    • /
    • 1992
  • Transmission error for a stepping motor-timing belt drive system is investigated experimentally and analytically. From FFT analysis of the experimental results, it is found that the transmission error consists of three periodic errors : (1) error by the stepping motor per one resolution angle theta.$_{m}$, (2) error by the pulley eccentricity per one revolution theta.$_{e}$, and (3) error by the meshing effect between the belt and the pulley teeth per one pitch revoltion theta.$_{p}$. In order to investigate the effects of some design parameters on the transmission error, the dynamic models of the stepping motor-timing belt drive system are derived by Bondgraph. According to the simulation results, as the belt total tension increases, theta.$_{m}$ and theta.$_{e}$ decrease due to the nonlinearity of the belt. In adition, the numerical and experimental results show that theta.$_{m}$ and theta.$_{e}$ of the loaded case are larger than those of the unloaded case. The analytical results are in good accordance with the experimental results.sults.s.sults.

Analysis and Design of the Cylindrical-rectangular Patch Microstrip Resonator (원통면 사각패치 마이크로스트립 공진기 특성 해석 및 설계)

  • 이민수;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.925-933
    • /
    • 1991
  • Caracteristics of cylindrical rectanyular patch microshtrip resonator are analyzed by cavity model. To minimize the error of resonant frequency due to fringing field, the resonant frequency is calcylated by the concept of effective dielectric constant. The transmisson type resonator operating at 3GHz is designed and manufactured. The measured data of the resonant frequency and reflection loss are 3.019Ghz and \ulcorner32.78dB respectively. These results nearly coincide with theoretical results.

  • PDF