• 제목/요약/키워드: Transmission X-ray

검색결과 1,290건 처리시간 0.033초

Photocatalytic Degradation of Methylene Blue in Presence of Graphene Oxide/TiO2 Nanocomposites

  • Kim, Sung Phil;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2660-2664
    • /
    • 2014
  • A simple method of depositing titanium dioxide ($TiO_2$) nanoparticles onto graphene oxide (GO) as a catalytic support was devised for photocatalytic degradation of methylene blue (MB). Thiol groups were utilized as linkers to secure the $TiO_2$ nanoparticles. The resultant GO-supported $TiO_2$ (GO-$TiO_2$) sample was characterized by transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS), and X-ray photoelectron spectroscopy (XPS) measurements, revealing that the anatase $TiO_2$ nanoparticles had effectively anchored to the GO surface. In the photodegradation of MB, GO-$TiO_2$ exhibited remarkably enhanced photocatalytic efficiency compared with thiolated GO and pure $TiO_2$ nanoparticles. Moreover, after five-cycle photodegradation experiment, no obvious deactivation was observed. The overall results showed that thiolated GO provides a good support substrate and, thereby, enhances the photodegradation effectiveness of the composite photocatalyst.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • 김지민;양우석;오윤정;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Characterization of Ni Oxide Nanofibers by Electrospinning

  • 박주연;고성위;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.379.2-379.2
    • /
    • 2016
  • The Ni oxide/PVP nanofibers were synthesized by sol-gel and electrospinning technique. The obtained Ni oxide/PVP (polyvinylpyrrolidone) nanofibers were calcined to remove the PVP compound at 873 and 1173 K. The Ni oxide/PVP nanofibers were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM images showed that the mat form was prepared by calcination of Ni oxide/PVP nanofibers at 873 K. And the crystal structure of Ni oxide at 1173 K was also confirmed by SEM images. XRD results shows the crystallinity of metallic Ni and NiO. TEM images also verified the crystal phase of Ni and Ni oxide. XP spectra revealed that the oxidation state of Ni to conclude the chemical composition of Cu oxide nanofibers.

  • PDF

Magnetization of Ultrafine Cadmium Ferrite Particles

  • Park, Eun-Jung
    • 한국세라믹학회지
    • /
    • 제39권1호
    • /
    • pp.12-15
    • /
    • 2002
  • Ultrafine cadmium ferrite particles have been investigated by X-ray diffractometry, transmission electron microscopy and SQUID magnetometry. All peaks of X-ray diffraction patterns are broad, but correspond to a cubic spinel structure with the lattice constant of 8.65 $\AA$. The average particle size determined by TEM is 9.7 nm and the size distribution of particles is not normal, but lognormal. The maximal magnetization measured at 5 K was 17.7 emu/g. The experimental data show a transi-tion from a disorder ferrimagnetic phase to a spin-glass phase (i.e. reentrant behavior) with a freezing temperature (T$\_$f/) of 30 K. Superparamagnetic behavior of the particles is confirmed by the coincidence of the plots of M vs. H/T for 100 and 300 K.

직접 메탄올 연료전지에서 담지체로서의 GW 응용 (Application of Graphite Nano-fiber as a supporting material in the DMFC)

  • 박인수;박경원;최종호;김영민;정두환;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2002년도 연료전지심포지움 2002논문집
    • /
    • pp.197-200
    • /
    • 2002
  • The electrooxidation of methanol was studied using carbon-supported PtRu(1:1) alloy nanoparticles In sulfuric acid solution for application to a direct methanol fuel cell. The GNF-supported catalyst showed excellent catalytic activities compared to those of Vulcan XC-72. The structure and electrocatalytic activity of carbon-supported electrocatalyst were investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The CV and CA confirmed the advantage of GNF as the supporting material. This can be explained by assuming that the enhanced activities of GNF-supported catalyst for methanol electrooxidation were caused by the unique properties of GNF.

  • PDF

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung;Han, Sang-Beom;Lee, Hyun-Hwi;Park, Kyung-Won
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.40-44
    • /
    • 2010
  • In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.

플라즈마 아크 방전법으로 제조된 Fe 나노분말의 미세조직에 미치는 챔버압력 영향 (Effect of Chamber Pressure on the Microstructure of Fe Nano Powders Synthesized by Plasma Arc Discharge Process)

  • 박우영;윤철수;김성덕;유지훈;오영우;최철진
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.328-332
    • /
    • 2004
  • Fe nanopowders were successfully synthesized by plasma arc discharge (PAD) process using Fe rod. The influence of chamber pressure on the microstructure was investigated by means of X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared particles had nearly spherical shapes and consisted of metallic cores (a-Fe) and oxide shells (Fe$_{3}$O$_{4}$), The powder size increased with increasing chamber pressure due to the higher dissolution and ejection rate of H$_2$ and gas density in the molten metal.

Biosynthesis of Silver Nanoparticles by Phytopathogen Xanthomonas oryzae pv. oryzae Strain BXO8

  • Narayanan, Kannan Badri;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1287-1292
    • /
    • 2013
  • Extracellular biogenic synthesis of silver nanoparticles with various shapes using the rice bacterial blight bacterium Xanthomonas oryzae pv. oryzae BXO8 is reported. The synthesized silver nanoparticles were characterized by UV-Vis spectroscopy, powder X-ray diffractometry (XRD), scanning electron microscopy, energy dispersive X-ray spectrometry, and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical, with anisotropic structures such as triangles and rods, with an average size of 14.86 nm. The crystalline nature of silver nanoparticles was evident from the bright circular spots in the SAED pattern, clear lattice fringes in the high-resolution TEM images, and peaks in the XRD pattern. The FTIR spectrum showed that biomolecules containing amide and carboxylate groups are involved in the reduction and stabilization of the silver nanoparticles. Using such a biological method for the synthesis of silver nanoparticles is a simple, viable, cost-effective, and environmentally friendly process, which can be used in antimicrobial therapy.

FCVA 방법으로 증착된 다이아몬드상 탄소 박막의 XPS 및 XRR 특성 연구 (A Study on XPS and XRR Characteristics of DLC films Deposited by FCVA Method)

  • 박창균;장석모;엄현석;서수형;박진석
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권3호
    • /
    • pp.109-115
    • /
    • 2003
  • Diamond-like carbon (DLC) films are deposited at room temperature using a filtered cathodic vacuum arc (FCVA) technique. The influence of negative bias voltage (applied to the substrate from 0 to -250V) on the $sp^3$ hybridized carbon fraction is examined by Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) for C 1s core peak. For the first time, depth profile of C 1s, Si 2p, and O 1s XPS peaks for the deposited DLC film are obtained. DLC film is modeled as a multilayered structure. composing of surface, bulk, and interface. In addition, the x-ray reflectivity (XRR) is proposed as a method for estimating the density, surface roughness, and thickness of each layer constituting the DLC film. The estimated thickness of DLC film is in good agreement with the result obtained from the transmission electron microscope (TEM) measurement.

열화학기상증착법을 이용한 GaN nanowire 합성 (Synthesis of GaN nanowires using thermal chemical vapor deposition)

  • 류승철;이태재;이철진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.931-934
    • /
    • 2001
  • GaN nanowires has much interest as one-dimensional materials for blue light LED. GaN-based materials have been the subject of intensive research for blue light emission and high temperature/high power electronic devices. In this letter, the synthesis of GaN nanowires by the reaction of mixture of GaN nanowires by the reaction of mixture of Ga meta and GaN powder with NH$_3$ using thermal chemical vapor deposition is reported. X-ray diffraction, energy dispersive x-ray spectrometer, scanning electron microscopy, and transmission electron microscopy indicate that those GaN nanowires with hexagonal wurtzite structure were about 60nm in diameter and up to several hundreds of micrometers in length.

  • PDF