• 제목/요약/키워드: Transmission Power Allocation

검색결과 232건 처리시간 0.022초

지연 허용적인 수중 센서 네트워크에서 노드 그룹핑을 이용한 매체 접속 제어 프로토콜 (A Node-Grouping MAC Protocol in Delay-Tolerant Underwater Acoustic Sensor Networks)

  • 천진용;손권;장윤선;조호신
    • 한국통신학회논문지
    • /
    • 제36권10B호
    • /
    • pp.1200-1209
    • /
    • 2011
  • 본 논문에서는 수중환경에서의 거리에 따른 전파 손실 특성을 이용한 직교 주파수 분할 다중 접속 방식(Orthogonal Frequency Division Multiple Access, OFDMA) 기반의 새로운 에너지 효율적인 매체 접속 제어(Medium Access Control, MAC) 프로토콜을 제안한다. 제안하는 방식은 센서 노드들을 싱크 노드를 중심으로 싱크 노드와의 거리에 따라 그룹을 나눈 후, 그룹에 서로 다른 주파수 대역을 각각 할당하여 사용하도록 한다. 이러한 방식으로 네트워크 전체의 전송 전력 소모를 줄이고 각 센서 노드에게 최소 허용 신호 대 잡음비 (Accepted Minimum SNR, AMS)를 보장한다. 추가적으로 싱크 노드는 동적 인 부채널 할당 (dynamic sub-channel allocation)으로 데이터 전송률을 향상한다. 모의실험을 통해 제안하는 매체 접속 제어 프로토콜의 수중 센서 네트워크에서의 성능을 확인할 수 있었다.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

Joint Mode Selection and Resource Allocation for Mobile Relay-Aided Device-to-Device Communication

  • Tang, Rui;Zhao, Jihong;Qu, Hua;Zhu, Zhengcang;Zhang, Yanpeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.950-975
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying cellular networks is a promising add-on component for future radio communication systems. It provides more access opportunities for local device pairs and enhances system throughput (ST), especially when mobile relays (MR) are further enabled to facilitate D2D links when the channel condition of their desired links is unfavorable. However, mutual interference is inevitable due to spectral reuse, and moreover, selecting a suitable transmission mode to benefit the correlated resource allocation (RA) is another difficult problem. We aim to optimize ST of the hybrid system via joint consideration of mode selection (MS) and RA, which includes admission control (AC), power control (PC), channel assignment (CA) and relay selection (RS). However, the original problem is generally NP-hard; therefore, we decompose it into two parts where a hierarchical structure exists: (i) PC is mode-dependent, but its optimality can be perfectly addressed for any given mode with additional AC design to achieve individual quality-of-service requirements. (ii) Based on that optimality, the joint design of MS, CA and RS can be viewed from the graph perspective and transferred into the maximum weighted independent set problem, which is then approximated by our greedy algorithm in polynomial-time. Thanks to the numerical results, we elucidate the efficacy of our mechanism and observe a resulting gain in MR-aided D2D communication.

모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법 (Economic Generation Allocation with Power Equation Constraints)

  • 엄재선;김건중;이상중;최장흠
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.

Efficient Interference Control Technology for Vehicular Moving Networks

  • Oh, Sung-Min;Lee, Changhee;Lee, Jeong-Hwan;Park, Ae-Soon;Shin, Jae Sheung
    • ETRI Journal
    • /
    • 제37권5호
    • /
    • pp.867-876
    • /
    • 2015
  • This paper proposes an efficient interference control scheme for vehicular moving networks. The features of the proposed scheme are as follows: radio resources are separated into two resource groups to avoid interference between the cellular and vehicle-to-vehicle (V2V) links; V2V links are able to share the same radio resources for an improvement in the resource efficiency; and vehicles can adaptively adjust their transmission power according to the interference among the V2V links (based on the distributed power control (DPC) scheme derived using the network utility maximization method). The DPC scheme, which is the main feature of the proposed scheme, can improve both the reliability and data rate of a V2V link. Simulation results show that the DPC scheme improves the average signal-to-interference-plus-noise ratio of V2V links by more than 4 dB, and the sum data rate of the V2V links by 15% and 137% compared with conventional schemes.

UMMAC: A Multi-Channel MAC Protocol for Underwater Acoustic Networks

  • Su, Yishan;Jin, Zhigang
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2016
  • In this paper, we propose a multi-channel medium access control (MAC) protocol, named underwater multi-channel MAC protocol (UMMAC), for underwater acoustic networks (UANs). UMMAC is a split phase and reservation based multi-channel MAC protocol which enables hosts to utilize multiple channels via a channel allocation and power control algorithm (CAPC). In UMMAC, channel information of neighboring nodes is gathered via exchange of control packets. With such information, UMMAC allows for as many parallel transmissions as possible while avoiding using extra time slot for channel negotiation. By running CAPC algorithm, which aims at maximizing the network's capacity, users can allocate their transmission power and channels in a distributed way. The advantages of the proposed protocol are threefold: 1) Only one transceiver is needed for each node; 2) based on CAPC, hosts are coordinated to negotiate the channels and control power in a distributed way; 3) comparing with existing RTS/CTS MAC protocols, UMMAC do not introduce new overhead for channel negotiation. Simulation results show that UMMAC outperforms Slotted floor acquisition multiple access (FAMA) and multi-channel MAC (MMAC) in terms of network goodput (50% and 17% respectively in a certain scenario). Furthermore, UMMAC can lower the end-to-end delay and achieves a lower energy consumption compared to Slotted FAMA and MMAC.

Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

  • Lei, Jiang;Vazquez-Castro, Maria Angeles
    • Journal of Communications and Networks
    • /
    • 제13권5호
    • /
    • pp.472-480
    • /
    • 2011
  • In this paper, we investigate two new candidate transmission schemes, non-orthogonal frequency reuse (NOFR) and beam-hopping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the signal-to-interference plus noise ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g., power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performance of the two candidate schemes. Simulation results show significant improvements in terms of power gain, spectral efficiency and traffic matching ratio when comparing with conventional systems, which are designed based on uniform bandwidth and power allocation. The results also show that BH system turns out to show a less complex design and performs better than NOFR system specially for non-real time services.

Physical Layer Security for Two-Way Relay NOMA Systems with Energy Harvesting

  • Li, Hui;Chen, Yaping;Zou, Borong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2094-2114
    • /
    • 2022
  • Due to the wide application of fifth generation communication, wireless sensor networks have become an indispensable part in our daily life. In this paper, we analyze physical layer security for two-way relay with energy harvesting (EH), where power splitter is considered at relay. And two kinds of combined methods, i.e., selection combining (SC) and maximum ratio combining (MRC) schemes, are employed at eavesdropper. What's more, the closed-form expressions for security performance are derived. For comparison purposes, this security behaviors for orthogonal multiple access (OMA) networks are also investigated. To gain deeper insights, the end-to-end throughput and approximate derivations of secrecy outage probability (SOP) under the high signal-to-noise ratio (SNR) regime are studied. Practical Monte-Carlo simulative results verify the numerical analysis and indicate that: i) The secure performance of SC scheme is superior to MRC scheme because of being applied on eavesdropper; ii) The secure behaviors can be affected by various parameters like power allocation coefficients, transmission rate, etc; iii) In the low and medium SNR region, the security and channel capacity are higher for cooperative non-orthogonal multiple access (NOMA) systems in contrast with OMA systems; iv) The systematic throughput can be improved by changing the energy conversion efficiency and power splitting factor. The purpose of this study is to provide theoretical direction and design of secure communication.

다중 안테나를 이용하는 다중 홉 시스템의 안테나와 중계기 선택 기법 (Antenna and Relay Selection Technique of Multi-hop System using Multiple Antennas)

  • 김렴;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.29-34
    • /
    • 2011
  • 본 논문에서는 각 홉에서 다중 안테나를 가지는 노드 간 채널 환경을 고려하여 가장 좋은 성능을 가지는 하나의 안테나와 하나의 중계기를 동시에 선택하는 시스템을 제안하며, 제안된 시스템의 성능을 분석한다. 다중 채널을 통해 다수의 수신 신호를 받아 MRC(Maximal Ratio Combining) 기법을 이용하여 다이버시티를 얻는 일반적인 시스템은 상대적으로 열악한 채널을 통과하는 신호 또한 수신하며, 이는 곧 시스템의 성능 저하로 이어지는 결과를 얻는다. 제안하는 시스템은 송신단-중계기, 중계기-수신단 간의 모든 채널 환경을 고려하여 가장 좋은 채널을 통해서만 데이터를 전송함으로써 열악한 채널을 통과하는 신호의 수신을 차단함으로써 성능을 향상시킨다. 따라서 가장 좋은 채널상의 안테나와 중계기를 동시에 선택하는 과정을 거치며, 이를 구현하기 위해 단일 중계기만을 선택하고 각 홉에서는 단일 안테나만을 이용할 수 있는 알고리즘을 제안한다.

온실가스 감축정책에 따른 발전사업자의 대응 방안에 관한 연구 (A Study on the GENCO Adaptive Strategy for the Greenhouse Gas Mitigation Policy)

  • 최동찬;한석만;김발호
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.522-533
    • /
    • 2012
  • This paper presents an adaptive strategy of GENCOs for reducing the greenhouse gas by fuel mix change. Fuel mix stands for generation capacity portfolio composed of different fuel resources. Currently, the generation sector of power industry in Korea is heavily dependent on fossil fuels, therefore it is required to change the fuel mix gradually into more eco-friendly way based on renewable energies. The generation costs of renewable energies are still expensive compared to fossil fueled resources. This is why the adaptive change is more preferred at current stage and this paper proposes an optimal strategy for capacity planning based on multiple environmental scenarios on the time horizon. This study used the computer program tool named GATE-PRO (Generation And Transmission Expansion PROgram), which is a mixed-integer non-linear program developed by Hongik university and Korea Energy Economics Institute. The simulations have been carried out with the priority allocation method in the program to determine the optimal mix of NRE(New Renewable Energy). Through this process, the result proposes an economic fuel mix under emission constraints compatible with the greenhouse gas mitigation policy of the United Nations.