• Title/Summary/Keyword: Transmission Oil

Search Result 240, Processing Time 0.021 seconds

An Experimental Study on the Power Transmission Efficiency and Frictional Noise of $MoS_2$-Bonded-Film Coated Reduction Gears (접착형 $MoS_2$고체윤활피막이 코팅된 감속기의 동력전달효율과 소음 특성에 관한 실험적 고찰)

  • 윤의성;공호성;한홍구;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • MoS$_{2}$ bonded film was applied to reduction gears, and its lubricating properties were experimentally evaluated in terms of the power transmission efficiency and the frictional noise with a dynamo-typed gear test rig. Tests were performed in both oil lubrication and dry condition where the rotating velocity and loading torque were varied. In dry condition, MoS$_{2}$ bonded films effected the power transmission efficiency to increase about 5%, and the frictional noise level to decrease about 6 dB under the test operating conditions. It well proved that MoS$_{2}$ bonded films were a very effective solid lubricant for reduction gears. In oil lubricating conditions, the frictional properties of the coated gears were mainly governed by the lubricating oil, and lubricating effects of MoS2 bonded films were not evident. The result suggested that lubricating effect of MoS$_{2}$ bonded films would be limited to prevent a damage of reduction gears in the initial run when they were used in oil lubrication conditions.

A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System (서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

Lifetime Assessment for Oil-Paper Insulation using Thermal and Electrical Multiple Degradation

  • Kim, Jeongtae;Kim, Woobin;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.840-845
    • /
    • 2017
  • In this paper, in order to investigate the lifetime of oil-paper insulation, specimens were artificially aged with thermal and electrical multiple stresses. Accelerated ageing factors and equivalent operating years for each aging temperatures were derived from results of tensile strengths for the aged paper specimens. Also, the evaluation for the multi-stress aged specimens were carried out through the measurement of impulse breakdown voltage at high temperature of $85^{\circ}C$. The lifetimes of the oil-paper insulations were calculated with the value of 66.7 for 1.0 mm thickness specimens and 69.7 for 1.25 mm thickness specimens throughout the analysis of impulse BD voltages using equivalent operating years, which means that dielectric strengths would not be severely decreased until the mechanical lifetime limit. Therefore, for the lifetime evaluation of the oil-paper insulation, thermal aging would be considered as a dominant factor whereas electrical degradation would be less effective.

Application of nanoparticles in extending the life of oil and gas transmission pipeline

  • Yunye, Liu;Hai, Zhu;Jianfeng, Niu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.733-741
    • /
    • 2022
  • The amount of natural gas that is used on a worldwide scale is continuously going up. Natural gas and acidic components, such as hydrogen sulfide and carbon dioxide, cause significant corrosion damage to transmission lines and equipment in various quantities. One of the fundamental processes in natural gas processing is the separation of acid gases, among which the safety and environmental needs due to the high toxicity of hydrogen sulfide and also to prevent wear and corrosion of pipelines and gas transmission and distribution equipment, the necessity of sulfide separation Hydrogen is more essential than carbon dioxide and other compounds. Given this problem's significance, this endeavor aims to extend the lifespan of the transmission lines' pipes for gas and oil. Zinc oxide nanoparticles made from the environmentally friendly source of Allium scabriscapum have been employed to accomplish this crucial purpose. This is a simple, safe and cheap synthesis method compared to other methods, especially chemical methods. The formation of zinc oxide nanoparticles was shown by forming an absorption peak at a wavelength of about 355 nm using a spectrophotometric device and an X-ray diffraction pattern. The size and morphology of synthesized nanoparticles were determined by scanning and transmission electron microscope, and the range of size changes of nanoparticles was determined by dynamic light scattering device.

Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle (전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.

A Study on the Lubrication Flow Distribution in a Six-speed Automatic Transmission Valve Body (6속 자동변속기 밸브바디의 윤활오일유량 분배 특성 연구)

  • Kim, Jin-Yong;Na, Byung-Chul;Lee, Kye-Cheul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.

A Research for the Noise Development of the FF 8th Speed Automatic Transmission (전륜 8속 자동변속기 소음 개발에 대한 연구)

  • Lee, Hyun Ku;Hong, Sa Man;Kim, Moo Suk;Hur, Jin Wook;Yoo, Dong Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.559-566
    • /
    • 2016
  • This study shows a development procedure and results of noise reduction for a new developed FF 8th speed automatic transmission. Based on planetary gear operating frequency analysis using PTA(planetary transmission analysis) program developed in 2012, It is expected that gear noise of the rear planetary gear set could be recognized easily in the concept design stage. Therefore, pRMC (planetary run many cases) analysis program that is developed in 2012 was applied to minimize the planetary gear noise level and noise distributions versus torque. To minimize noises coming from oil pump and final gears of a new transmission, several changes were applied, such as changing the clearance of double angular ball bearing, the oil pump rotor tooth number from 9 to 11 and the oil pump type from parachoid to megafloid and so on. Besides, stiffness values of the transmission case and the mount bracket were measured and reinforced properly. Finally, The total noise of the new FF 8th speed automatic transmission was developed successfully. Furthermore, E.O.L. testers also have been adapted to control the noise quality of automatic transmission assembly in the manufacturing factory. This paper could provide practical solutions to the automatic transmission NVH problems.

A Study on Performance of Cooling Fan for Auto Transmission Oil Cooler in the Large-Size Diesel Engine (대형 디젤엔진 자동변속기 오일쿨러 냉각팬 성능에 관한 연구)

  • Yi, Chung-Seob;Suh, Jeong-Se;Song, Chul-Ki;Yun, Ji-Hun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • This study has investigated numerically and experimentally the flow characteristic of air-cooling fan for transmission oil cooler in the large-size diesel engine. Impellers of cooler were composed of eight normal-scale and eight small-scale blades in the zig-zag pattern. In order to increase the discharge pressure of cooling fan, turbo type of fan blade is proposed in the impeller for transmission oil cooler. The fluidic performance of cooling fan has been estimated numerically by using the commercial code and experimentally carried out with reference on AMCA Standard 210-99. As a result, it is confirmed that the numerical result for performance curve is in good agreement with experimental data.

A Study on the Modeling and Optimization of Check Valve in Automatic Transmission (자동변속기내 체크밸브의 모델링 및 최적화 연구)

  • 송재수;정우진;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.111-119
    • /
    • 1997
  • The operating characteristics of the check valve in the clutch piston of an automatic transmission have a great effect on the shifting performance. This paper addresses the modeling, dynamic analysis, and optimization of the check valve. It was found that the vortex causes a pressure drop, which is related to the rotating speed of the clutch piston, oil volume discharged from the check valve, and valve geometry. Maximizing the oil volume discharged, geometry of the check valve is optimized. The results can be used to design an improved check valve which provides a suitable oil pressure curves for achieving smoother shifting.

  • PDF