• Title/Summary/Keyword: Transmission Loss Allocation

Search Result 57, Processing Time 0.027 seconds

Economic Generation Allocation with Power Equation Constraints (모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법)

  • Eom, Jae-Seon;Kim, Geon-Jung;Lee, Sang-Jung;Choe, Jang-Heum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.

Resource Allocation schemes for the asymmetric multimedia services (비대칭 멀티미디어 서비스를 위한 자원 할당 방법)

  • 이종찬;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.736-745
    • /
    • 2003
  • Resource allocation methods are proposed to address the problem of how flexibly allocate limited wireless resource to high bandwidth demanded realtime class with certain QoS guarantees in CDMA/TDD systems. In this method, A reserved access scheme is used for allocating the resource to realtime and non-realtime class respectively. We also propose a slot allocation algorithm for the CDMA/TDD system, which can prevent the performance degradation due to the interlink interference in each cell. Our framework is able to guarantee QoS continuity of realtime class and carry the maximum number of non-realtime subscriber. System performance of proposed method is evaluated by considering transmission delay, channel utilization and data loss, assuming a practical multi-cell environment and a multimedia service model. Our simulation results demonstrate the significant performance improvement.

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.

Radio resource allocation of TD-HSDPA based on position location of mobile terminals (TD-HSDPA에서 단말의 위치에 따른 무선자원 할당)

  • Yeo, Woon-Young;Kim, Seong-Keun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.271-272
    • /
    • 2008
  • TD-SCDMA combines TDMA and CDMA components to provide more efficient use of radio resources, and includes a new feature called HSDPA (high-speed downlink packet access) in the R5 stage. The TD-HSDPA supports high-speed traffic with a shared channel, but its uplink mechanism causes feedback problem for scheduling. Since the base station of TD-SCDMA can estimate the location of mobile terminals precisely, it can also estimate the possible path loss. In this paper, the base station utilizes the estimated path loss for scheduling, which is related with CQI (channel quality indicator) values. The proposed mechanism can provide the TD-HSDPA scheduler with an intial CQI value for efficient transmission.

  • PDF

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Resource Allocation Scheme Using Small Feedback Overhead in Downlink Non-Orthogonal Multiple Access Systems (하향링크 비직교 다중 접속 시스템에서 적은 피드백 오버헤드를 이용하는 자원 할당 기법)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1040-1046
    • /
    • 2022
  • In this paper, we consider a system with massive user equipments (UEs) in a cell and assume path loss and Rayleigh fading channels between the base station (BS) and UEs. In addition, it is assumed that the system bandwidth consists of multiple identical frequency subchannels. Under such assumptions, we propose a channel state information (CSI) feedback scheme and a resource allocation scheme for non-orthogonal multiple access (NOMA) transmission in order to reduce the feedback overhead of CSI generated by massive UEs and to reduce the complexity of resource allocation. In particular, for the proposed schemes, we analyze the sum data rate achievable by massive UEs in a cell and the outage probability with which the UEs in a cell do not meet the target data rate. Through the simulation results, we show that the proposed schemes can provide the superior outage probability, although it degrades the average sum data rate.

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

A study on improving the bandwidth utilization of fair packet schedulers (공평 패킷 스케줄러의 대역폭 이용 효율 개선에 관한 연구)

  • Kim Tae-Joon;Kim Hwang-Rae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.331-338
    • /
    • 2006
  • Most fair packet schedulers supporting quality-of-services of real-time multimedia applications are based on the finish time design scheme in which the expected transmission finish time of each packet is used as its timestamp. This scheme can adjust the latency of a flow with raising the flow's scheduling rate but it may suffer from severe bandwidth loss due to the coupled rate and delay allocation. This paper first introduces the concept of delay resource, and then proposes a scheduling method to improve the bandwidth utilization in which delay resource being lost due to the coupled allocation is transformed into bandwidth one. The performance evaluation shows that the proposed method gives higher bandwidth utilization by up to 50%.

A Node-Grouping MAC Protocol in Delay-Tolerant Underwater Acoustic Sensor Networks (지연 허용적인 수중 센서 네트워크에서 노드 그룹핑을 이용한 매체 접속 제어 프로토콜)

  • Cheon, Jin-Yong;Son, Kweon;Jang, Youn-Seon;Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10B
    • /
    • pp.1200-1209
    • /
    • 2011
  • In this paper, we propose a novel energy efficient MAC protocol which is based on orthogonal frequency division multiple access (OFDMA) and exploits the physical characteristic that propagation loss of acoustic wave depends on the distance. In the proposed scheme, sensor nodes are grouped according to the distance to sink node. Then, each group uses a different frequency band. The proposed scheme not only enables all sensor nodes to maintain the signal-to-noise ratio above a certain required level (Accepted Minimum SNR, AMS), but also reduces overall transmission power consumption. In addition, the dynamic sub-channel allocation is employed in order to improve data transmission rate. Simulations show that proposed MAC protocol has better performance in a delay-tolerant underwater acoustic sensor networks.

Radio Resource Management of CoMP System in HetNet under Power and Backhaul Constraints

  • Yu, Jia;Wu, Shaohua;Lin, Xiaodong;Zhang, Qinyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3876-3895
    • /
    • 2014
  • Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.