• Title/Summary/Keyword: Transmission Gear

Search Result 555, Processing Time 0.025 seconds

Development of a New Multi-Fingered Robot Hand Using Ultrasonic Motors and Its Control System (초음파 모터를 이용한 다지 로봇 손 및 제어시스템 개발)

  • Kim, Byoung-Ho;Oh, Sang-Rok;You, Bum-Jae;Suh, Il-Hong;Choi, Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.327-332
    • /
    • 2000
  • In this paper, a new multi-fingered robot hand using ultrasonic motors and its control system are developed. The developed robot hand has four fingers and fifteen articulated joints. The distal joint of each finger is directly driven by ultrasonic motor and all joints except the distal joint has low transmission gear mechanism with the motor. The developed robot hand has several advantages in size compared to a hand using conventional DC motors, and in performance compared to a hand using tendons to drive joints. A VME-bus based hand control system and ultrasonic motor driver are also developed. The performance of the hand is confirmed by using the developed control system in real-time.

  • PDF

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

Optimal Design of Gerotor (Ellipse1-Elliptical Involute-Ellipse2 Combined Lobe Shape) for Improving Fuel Efficiency and Reducing Noise (연비개선 및 소음저감을 위한 지로터 최적설계 (타원 1-타원형 인벌루트-타원2))

  • Kwak, Hyo Seo;Li, Sheng Huan;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.927-935
    • /
    • 2016
  • A gerotor is suitable for miniature manufacturing because it has a high discharge per cycle and a simple structure, while also being widely used as lubrication oil of engines and the hydraulic source of automatic transmission. In the automobile industry, it has been necessary to continuously improve the flow rate and noise of internal gear pumps for better fuel efficiency through optimal gerotor design. In this study, to obtain an optimal gerotor with an ellipse-elliptical involute-ellipse combined lobe shape, an automatic program was developed for calculating performance parameters and drawing a gerotor profile. An oil pump was assembled with the optimal gerotor together with the port used at the actual field and CFD analysis was performed on this assembly using Ansys-CFX. A performance test for the oil pump was carried out and showed good agreement with the results obtained from the theoretical analysis and the CFD analysis.

LOS(line-of-sight) Stabilization Control of OTM(on-the-move) Antenna Driven by Geared Flexible Transmission Mechanism (기어와 유연축을 갖는 구동계로 구동되는 OTM 안테나 시선의 안정화 제어)

  • Kang, Min-Sig;Yoon, Wo-Hyun;Lee, Jong-Bee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.951-959
    • /
    • 2011
  • In this study, an OTM(on-the-move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite while moving was addressed. Since LOS(line-of-sight) of antenna should direct satellite consistently while vehicle moving to guarantee high satellite communication quality, active antenna LOS stabilization is a core technology for OTM antenna. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. In consideration of driving mechanism which consists of gear train and flexible driving shafts, a two-mass-system dynamic model coupled with vehicle motion was presented. An internal PI-control loop + outer PI-control loop structure has been suggested in order to damp the torsional vibration and stabilize control system. The classical pole-placement method was applied to design control gains. In addition, a vehicle motion compensation control beside of the feedback control loop has been suggested to improve LOS stabilization performances. The feasibility of the proposed control design was verified along with some experimental results.

A Development of an Occupant Packaging Tool Using 3-Dimensional Coordinates in Passenger Vehicle's Driver Space (3차원 좌표를 이용한 승용차 운전공간의 설계기법 개발)

  • Chung, Sung-Jae;Park, Min-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2000
  • This research suggested a method by which the driver space can be designed to best accommodate the driver's anthropometric characteristics. Three-dimensional manikins and a variable seating buck were developed and used for this study. Manikins were designed with 18 links comprising the 95th percentile male and 5th percentile female data. The seating buck was built to create various driving environments using the distance and the height between the H-point(hip pivot) of the seat and the AHP(accelerator heel point), the angle of the back rest, the angle of the steering wheel, the vertical distance of the steering wheel, and the location of the T.G.S.(transmission gear shift) knob. Measurements of each variable were collected with a coordinate measuring machine by positioning the 3-D manikin under various combinations of the design factors of the seating buck, which was constructed based on mid-size domestic passenger cars. The data were then converted to the joint angles of the driver. The combination of the measurements for an optimal driving environment is suggested by applying sets of the joint angles at which the driver feels comfortable.

  • PDF

Development of a Tractor Attached TMR Mixer(II) -Modification of TMR mixer and its performance test- (트랙트 견인형 TMR 배합기의 개발(II) -TMR 배합기의 수정 개발 및 성능시험-)

  • Park, K. K.;Koo, Y. M.;Kim, H. J.;Seo, S. H.;Jang, C.;Nah, K. D.;Hong, D. H.;Lee, J. S.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.257-264
    • /
    • 2000
  • A tractor attached TMR(model 430) mixer has been developed in a previous study. However, the mixer was found to be improved through field applications in its capacity, manufacturing cost, ergonomic design and power-train requirement. The TMR mixer was modified into a model TMR500, approved by Institute of Agricultural Mechanization, as follows : 1. Roughage cutting system was seperated from the mixer, resulting in the 33% reduction of manufacturing cost. 2. Enlarged hopper capacity enabled to feed 60 heads at a batch. 3. Hydraulically controlled gate system saved ergonomic man power. 4. Power transmission system was changed from a chain-sprocket system(27:1) to the gear-train reduction system(38.6:1) to satisfy the recommended use of 540rpm PTO input.

  • PDF

A Study on the Mold System of Bicycles Gear for Driving Safety (주행 안전을 위한 자전거 기어의 프레스금형에 관한 연구)

  • Jeong, Youn-Seung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • Recently, bicycle has means of effective healthy transportation, and riding the bicycles is considered as popular recreational and sporting activities. Also, the saddle, steering system, driving device and braking device are researched briskly because of consumer's need for driving performance and comfort. Especially, the importance of a cassette responsible for transmission function by transmitting power to the drive shaft through the chain is very focused. The writer conducted structural analysis for the sprocket of each level using the ANSYS widely used for the analysis. Speed shifting performance was enhanced by minimization / simplification of shifting point through a sort of tooth profile of the cassette. By partitioning a clear value type and other shifting point, it has been modified to enable smooth speed-shifting. In addition, as titanium precision forming process, this study studied the molding technique by blanking and dies forging for mass production of the cassette. so it could be expected that the entire drive train would utilize that in the future. The stamping process capability for thin materials for the mass production of the sprockets is applicable to producing automobile parts, so lightweight component production is likely to be possible through that, for the safety of driving.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Optimal Design of Gerotor with Combined Lobe Profiles (Ellipse 1-Elliptical Involute-Ellipse 2) (타원 1-타원형 인벌루트-타원 2 로브 형상의 제로터 최적 설계)

  • Kwak, Hyo Seo;Li, Sheng Huan;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1237-1244
    • /
    • 2015
  • A gerotor can be manufactured in a miniature size because it has a high discharge per cycle and a simple structure. Gerotors are widely used for the lubrication oil of an engine and as the hydraulic source of an automatic transmission. Recently, improvements in fuel efficiency and noise reduction have come to the fore in the automobile industry, and it has been necessary for better fuel efficiency to continuously improve the flow rate and noise of internal gear pumps through the optimal design of the gerotor and port shape. In this study, gerotors were generated based on the equations derived for a lobe shape with multiple profiles (ellipse 1-elliptical involute-ellipse 2). The ranges of the design parameters were considered to prevent a cusp and loop. In addition, the optimal lobe shape was obtained by determining the influence of the lobe shape on the performances (flow rate, irregularity, etc.), according to the values of the design parameters.

A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter (적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.274-283
    • /
    • 2006
  • The Permanent Magnet Synchronous Motor(PMSM) drive systems with ball-screw, gear and timing-belt are widely used in industrial applications such as NC machine, machine tools, robots and factory automation. These systems have torsional vibration in torque transmission from servo motor to mechanical load due to the mechanical couplings. This vibration makes it difficult to achieve quick responses of speed and may result in damage to the mechanical plant. This paper presents adaptive notch filter with auto searching function of vibration frequency to reject the mechanical vibration of linear feeder system with PMSM. The proposed adaptive notch filter can suppress the torque command signal of PMSM in the resonant bandwidth for reject the mechanical torsional vibration. However, the resonant frequency can vary with conditions of mechanical load system and coupling devices, adaptive notch filter can auto search the vibration frequency and suppress the vibration signal bandwidth. Computer simulation and experimental results shows the verification of the proposed adaptive notch filter in linear feeder system with PMSM.