• 제목/요약/키워드: Translational osseous genioplasty

검색결과 2건 처리시간 0.015초

Computer-assisted horizontal translational osseous genioplasty: a simple method to correct chin deviation

  • Keyhan, Seied Omid;Azari, Abbas;Yousefi, Parisa;Cheshmi, Behzad;Fallahi, Hamid Reza;Valipour, Mohammad Amin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제42권
    • /
    • pp.36.1-36.5
    • /
    • 2020
  • Background: Different genioplasty techniques are applied for the adjustment of chin area deformities such as chin deviation. Results: Thirty patients with simple facial asymmetry due to chin deviation underwent computer-assisted horizontal translational osseous genioplasty. In this technique, a surgical guide was used to cut a bone strip from the side where the chin should be transferred to; then, the same bone strip was used for the filling of the gap that was formed on the opposite side. Conclusion: According to the experience gained from this study, the authors believe that computer-assisted horizontal translational osseous genioplasty is a simple and reliable technique for patients with facial asymmetry due to chin deviation.

절골 턱끝성형술에 있어 3가지 축에 따른 회전적 관계의 활용 (Three Rotational Variables in Osseous Genioplasty)

  • 이현태;김용하;김태곤;이준호
    • Archives of Plastic Surgery
    • /
    • 제38권3호
    • /
    • pp.279-286
    • /
    • 2011
  • Purpose: Chin is located in a prominent position, and is important to balance and harmony of the face. Genioplasty is widely performed with patients' high satisfaction, yet being relatively simple procedure. Recently in analysis of dentofacial trait, three rotational variables of yaw, pith, and roll are considered with three translational variables (forward/backward, up/down, right/left). And we could correct chin deformity effectively by applying the three rotational variables with three translational variables in genioplasty. Methods: Twenty-eight patients who have chin deformity underwent osseous genioplasty. Preoperative photography, facial three dimensional computed tomography, and cephalography were taken while chin deformities were accessed. The chin deformity was classified into four categories; macrogenia, microgenia, asymmetric chin deformity, and combined chin deformity groups. According to the nature of chin deformities and the patients' desire, preoperative plans were formulated, in consideration of three rotational variables and translational variables. Through intraoral approach, anterior mandible was exposed in the subperiosteal plane between the mental foramens and beneath the mental foramens. In the anterior mandible, vertical and horizontal grid lines with 5 mm intervals were marked to confirm the spatial location of osteomized bone segment after osteotomy. Chin repositioning was done in consideration of axial rotation and planar translation. Results: Most of the patients had achieved satisfactory results with few complications. By considering the three rotational variables, it was possible to make the chin repositioning effectively. One of the patients complained about insufficient chin correction. In other case, persistent sensory impairment around chin was observed. Conclusion: In conclusion, it is worthwhile to apply preoperative analysis and operative procedures in consideration of a three rotational variables with three translational variables in genioplasty.