• 제목/요약/키워드: Translational medical research

검색결과 122건 처리시간 0.023초

토모테라피의 자동영상정합 분석 (Analysis of Automatic Rigid Image-Registration on Tomotherapy)

  • 김영록;조광환;정재홍;정주영;임광채;김용호;문성권;배선현;민철기;김은석;여승구;서태석;최보영;민정환;안재억
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제37권1호
    • /
    • pp.37-47
    • /
    • 2014
  • 본 연구는 토모테라피(Accuray Inc, Sunnyvale, CA, USA)의 자동영상정합 과정에서 조정인자에 따른 종축과 회전축의 오차를 분석하였다. 다섯그룹(두부, 경부, 흉부, 복부, 골반부)으로 구분된 총 50명의 치료가 종료된 환자를 대상으로 하였고, 총 500개의 megavoltage computed tomography (MVCT) 영상을 분석하였다. 모의치료에서 kilovoltage computed tomography (kVCT)영상을 얻었고, 치료계획을 위하여 토모테라피 Hi-Art II 치료계획시스템(Accuray Inc, Sunnyvale, CA, USA)을 사용하였다. 매 회 치료 전 자동영상정합 과정을 시행하였고, 종축과 회전축의 오차를 기록하였다. 종축과 회전축의 일치도(adjustments)에서 자동영상정합을 분석하기 위하여 총 아홉 가지 조정인자를 적용하였고, 각 그룹의 계통적(systematic, ${\Sigma}$)과 통계적(random, RMS) 오차에 대하여 종합적 평균오차(overall mean value, M)를 구했다. 각 그룹 간 회전축 일치도의 종합적 평균오차에서 밀도와 해상도에 따른 다양한 조정인자에 의한 차이를 보였다. 밀도와 해상도가 높아짐에 따라 회전축 일치도에서 편차가 작았다. 그러므로, 토모테라피에서 "full-image"모드와 "standard"해상도를 이용한 자동영상정합은 정확한 오차 확인이 가능하고, 환자 재위치잡이(repositionning) 및 보정(correcting)에 도움이 될 것으로 사료된다.

Regulation of Tumor Neceosis Factor-${\alpha}$ Receptors and Signal Transduction Pathways

  • Han, Hyung-Mee
    • Toxicological Research
    • /
    • 제8권2호
    • /
    • pp.343-357
    • /
    • 1992
  • Tumor necrosis factor-${\alpha}$(TNF), a polypeptide hormone secreted primarily by activated macrophages, was originally identified on the basis of its ability to cause hemorrhagic necrosis and tumor regression in vivo. Subsequently, TNF has been shown to be an important component of the host responses to infection and cancer and may mediate the wasting syndrome known as cachexia. These systemic actions of TNF are reflected in its diverse effects on target cells in vitro. TNF initiates its diverse cellular actions by binding to specific cell surface receptors. Although TNF receptors have been identified on most of animal cells, regulation of these receptors and the mechanisms which transduce TNF receptor binding into cellular responses are not well understood. Therefore, in the present study, the mechanisms how TNF receptors are being regulated and how TNF receptor binding is being transduced into cellular responses were investigated in rat liver plasma membranes (PM) and ME-180 human cervical carcinoma cell lines. $^{125}I$-TNF bound to high ($K_d=1.51{\pm}0.35nM$)affinity receptors in rat liver PM. Solubilization of PM with 1% Triton X-100 increased both high affinity (from $0.33{\pm}0.04\;to\;1.67{\pm}0.05$ pmoles/mg protein) and low affinity (from $1.92{\pm}0.16\;to\;7.57{\pm}0.50$ pmoles/mg protein) TNF binding without affecting the affinities for TNF, suggesting the presence of a large latent pool of TNF receptors. Affinity labeling of receptors whether from PM or solubilized PM resulted in cross-linking of $^{125}I$-TNF into $M_r$ 130 kDa, 90 kDa and 66kDa complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, $^{125}I$-TNF binding to control and TNF-pretreated membranes were assayed. Specific binding was increased by pretreatment with TNF (P<0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF. As a next step, the post-receptor events induced by TNF were examined. Although the signal transduction pathways for TNF have not been delineated clearly, the actions of many other hormones are mediated by the reversible phosphorylation of specific enzymes or target proteins. The present study demonstrated that TNF induces phosphorylation of 28 kDa protein (p28). Two dimensional soidum dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) resolved the 28kDa phosphoprotein into two isoforms having pIs of 6.2 and 6.1. The pIs and relative molecular weight of p28 were consistent with those of a previously characterized mRNA cap binding protein. mRNA cap binding proteins are a class of translation initiation factors that recognize the 7-methylguanosine cap structure found on the 5' end of eukaryotic mRNAs. In vitro, these proteins are defined by their specific elution from affinity columns composed of 7-methylguanosine 5'-triphosphate($m^7$GTP)-Sepharose. Affinity purification of mRNA cap binding proteins from control and TNF treated ME-180 cells proved that TNF rapidly stimulates phosphorylation of an mRNA cap binding protein. Phosphorylation occurred in several cell types that are important in vitro models of TNF action. The mRNA cap binding protein phosphorylated in response to TNF treatment was purifice, sequenced, and identified as the proto-oncogene product eukaryotic initiation factor-4E(eIF-4E). These data show that phosphorylation of a key component of the cellular translational machinery is a common early event in the diverse cellular actions of TNF.

  • PDF