• Title/Summary/Keyword: Translation of coordinate axes

Search Result 3, Processing Time 0.017 seconds

Kaifangfa and Translation of Coordinate Axes (개방법(開方法)과 좌표축(座標軸)의 평행이동(平行移動))

  • Hong, Sung Sa;Hong, Young Hee;Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.27 no.6
    • /
    • pp.387-394
    • /
    • 2014
  • Since ancient civilization, solving equations has become one of the most important subjects in mathematics and mathematics education. The extractions of square roots and cube roots were first dealt in Jiuzhang Suanshu in the setting of subdivisions. Extending these, Shisuo Kaifangfa and Zengcheng Kaifangfa were introduced in the 11th century and the subsequent development became one of the most important contributions to mathematics in the East Asian mathematics. The translation of coordinate axes plays an important role in school mathematics. Connecting the translation and Kaifangfa, we find strong didactical implications for improving students' understanding the history of Kaifangfa together with the translation itself although the latter is irrelevant to the former's historical development.

Isometric Motion Recognition in Computer Animation

  • Lee, Myeong Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.55-63
    • /
    • 1997
  • This paper presents a method of detecting motion isometry from the motions of two objects in a three-dimensional space. We define the motion isometry based on the group theory and a newly defined coordinate system. Motion isometry can be detected using the coordinate system which we call Motion Specific Coordinate System(MSCS). In addition, we present an algorithm if two motions are isometric using the coordinate system. The algorithm can detect the difference in the motions of objects irrespective of their positions or the directions of their motions in a space. The algorithm can also detect the motion difference in the case of segmented objects which have several joints. The motion quantity is represented by translation values or rotation angles about some axes.

  • PDF

Discrete Wavelet Transform for Watermarking Three-Dimensional Triangular Meshes from a Kinect Sensor

  • Wibowo, Suryo Adhi;Kim, Eun Kyeong;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.249-255
    • /
    • 2014
  • We present a simple method to watermark three-dimensional (3D) triangular meshes that have been generated from the depth data of the Kinect sensor. In contrast to previous methods, which maintain the shape of 3D triangular meshes and decide the embedding place, requiring calculations of vertices and their neighbors, our method is based on selecting one of the coordinate axes. To maintain shape, we use discrete wavelet transform and constant regularization. We know that the watermarking system needs the information to be embedded; we used a text to provide that information. We used geometry attacks such as rotation, scales, and translation, to test the performance of this watermarking system. Performance parameters in this paper include the vertices error rate (VER) and bit error rate (BER). The results from the VER and BER indicate that using a correction term before the extraction process makes our system robust to geometry attacks.