• Title/Summary/Keyword: Transition velocity to fast fluidization

Search Result 2, Processing Time 0.015 seconds

Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor (케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향)

  • KIM, JUNGHWAN;BAE, DAL-HEE;BAEK, JEOM-IN;PARK, YEONG-SEONG;RYU, HO-JUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • To develop a pressurized chemical looping combustor, effect of pressure on minimum fluidization velocity and transition velocity to fast fluidization was investigated in a two-interconnected pressurized fluidized bed system using oxygen carrier particle. The minimum fluidization velocity was measured by bed pressure drop measurement with variation of gas velocity. The measured minimum fluidization velocity decreased as the pressure increased. The transition velocity to fast fluidization was measured by emptying time method and decreased as the pressure increased. Gas velocity in the fuel reactor should be greater than the minimum fluidization velocity and gas velocity in the air reactor should be greater than the transition velocity to fast fluidization to ensure proper operation of two interconnected fluidized bed system.

Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System (0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성)

  • RYU, HO-JUNG;KIM, JUNGHWAN;HWANG, BYUNG WOOK;NAM, HYUNGSEOK;LEE, DOYEON;JO, SUNG-HO;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.