• 제목/요약/키워드: Transition metals

검색결과 291건 처리시간 0.027초

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

Antiviral Activity of Ascorbic Acid Against Herpes Simplex Virus

  • Yoon, Joo-Chun;Cho, Jeong-Je;Yoo, Seung-Min;Ha, Youn-Mun
    • 대한미생물학회지
    • /
    • 제35권1호
    • /
    • pp.1-8
    • /
    • 2000
  • In order to explore the potential of ascorbic acid supplementation for the prevention and treatment of herpes simplex viral diseases, plaque reduction assays were performed. Ascorbic acid as well as copper chloride/ferric chloride were added to wells containing Vero cells infected with herpes simplex virus type 1 (HSV-1), and the infectivity of HSV-1 was determined. Since copper and iron are major transition metals in human plasma, near the normal human plasma concentrations of them were used for experiments. When Cu(II) and Fe(III) were applied, there were no significant differences between virus control and Cu(II)/Fe(III)-treated groups. But, when appropriate concentrations of ascorbic acid were added to wells, meaningful differences between control and ascorbate-treated groups were found. In the presence of Cu(II)/Fe(III) at $5.8/3.7\;{\mu}M$, 72-h treatment with ascorbate at $50\;{\mu}M$ reduced HSV-1 infections to $10.77%{\pm}4.25%$ (P < 0.001) and $500\;{\mu}M$ did to $3.06%{\pm}1.62%$ (P < 0.001). Moreover, the cytotoxicities for Vero cells at those concentrations were insignificant (P > 0.05). Current recommended dietary allowance (RDA) of ascorbic acid is 60 mg/day, and the oral intake of 60 mg/day of ascorbic acid yields plasma ascorbic acid at 45 to $58\;{\mu}M$ in a healthy adult man. Therefore, the results of this study suggest that the maintenance of appropriate level (more than $50\;{\mu}M$) of ascorbic acid in human plasma by appropriate amount (more than the RDA) of ascorbic acid supplementation may be helpful for the prevention and treatment of diseases caused by HSV -1 in an adult man. In addition, this study also suggests that ascorbic acid may be useful for the prophylaxis of fatal HSV-1 infections in neonates and the prevention of HSV-1 reactivation in immunocompromised hosts.

  • PDF

플라즈마 반응기의 수소발생에 미치는 $TiO_2$, Cu, Ni 촉매제 영향 (The co-effect of $TiO_2$, Cu and Ni Powders for Enhancing the Hydrogen Generation Efficiency using Plasma Technology)

  • 박재윤;김종석;정장근
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1599-1605
    • /
    • 2008
  • The research was conducted in order to improve the hydrogen generation efficiency of the electrical plasma technology from tap water by using $TiO_2$ photocatalyst, mixed Cu - $TiO_2$ powder, and mixed Ni - $TiO_2$ powder as the catalysts. Experiments were performed with the pulsed power and nitrogen carrier gas. The result has shown that the hydrogen concentration with the presence of $TiO_2$ powder was created higher than that of without using photocatalyst. The hydrogen concentration with using $TiO_2$ was 3012ppm corresponding to the applied voltage of 16kV, while it without using the $TiO_2$ was 1464ppm at the same condition . The effect of $TiO_2$ powder was strongly detected at the applied voltages of 15kV and 16kV. This phenomena might be resulted from the co-effect of the pulsed power discharge and the activated state of $TiO_2$ photocatalyst. The co-effect of the mixed catalysts such as Cu-$TiO_2$ and Ni-$TiO_2$ (the mixed photocatalyst $TiO_2$ and transition metals) were also investigated. The experimental results showed that, Cu and Ni powder dopants were greatly enhancing the activity of the $TiO_2$ photocatalyst. Under these experimental conditions the extremely high hydrogen concentrations at the optimal point were produced as 4089ppm and 6630ppm, respectively.

The electronic structure of the ion-beam-mixed Pt-Cu alloys by XPS and XANES

  • Lim, K.Y.;Lee, Y.S.;Chung, Y.D.;Lee, K.M.;Jeon, Y.;Whang, C.N.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.133-133
    • /
    • 1998
  • In the thin film alloy formation of the transition metals ion-beam-mixing technique forms a metastable structure which cannot be found in the arc-melted metal alloys. Sppecifically it is well known that the studies about the electronic structure of ion-beam-mixed alloys pprovide the useful information in understanding the metastable structures in the metal alloy. We studied the electronic change in the ion-beam-mixed ppt-Ct alloys by XppS and XANES. These analysis tools pprovide us information about the charge transfer in the valence band of intermetallic bonding. The multi-layered films were depposited on the SiO2 substrate by the sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr. These compprise of 4 ppairs of ppt and Cu layers where thicknesses of each layer were varied in order to change the alloy compposition. Ion-beam-mixing pprocess was carried out with 80 keV Ae+ ions with a dose of $1.5\times$ 1016 Ar+/cm2 at room tempperature. The core and valence level energy shift in these system were investigated by x-ray pphotoelectron sppectroscoppy(XppS) pphotoelectrons were excited by monochromatized Al K a(1486.6 eV) The ppass energy of the hemisppherical analyzer was 23.5 eV. Core-level binding energies were calibrated with the Fermi level edge. ppt L3-edge and Cu K-edge XANES sppectra were measured with the flourescence mode detector at the 3C1 beam line of the ppLS (ppohang light source). By using the change of White line(WL) area of the each metal sites and the core level shift we can obtain the information about the electrons pparticippating in the intermetallic bonding of the ion-beam-mixed alloys.

  • PDF

다공성 탄소계 재료를 이용한 수소저장 기술 (Hydrogen Storage Technology by Using Porous Carbon Materials)

  • 이영석;임지선
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.465-472
    • /
    • 2009
  • 본 총설에서는 최근 주로 연구되고 있는 활성탄, 탄소나노튜브, 팽창 흑연 및 활성 탄소 섬유 등 다공성 탄소재료를 중심으로 수소 저장량을 증대시키기 위한 기술 및 기 발표된 수소저장량과 그 장 단점에 대하여 고찰하였다. 수소저장능을 향상시키기 위한 탄소 내 기공의 최적의 크기는 0.6~0.7 nm로 조사되었다. 촉매의 경우 전이금속 및 그 금속산화물이 많이 이용되었으며, 주로 다공성 탄소재료에 도핑을 통해 수소저장능을 향상시켰다. 수소저장 매체인 다공성 탄소재료 중에서 활성탄은 대량생산이 가능하여 가격이 비교적 저렴한 장점이 있고 탄소나노튜브는 튜브의 튜브간 공간 외에도 내부공간에 수소를 저장할 수 있는 공간이 수소저장에 활용될 수 있다는 장점이 있다. 팽창 흑연은 흑연의 층 사이에 알칼리 금속의 삽입 시 층간 거리가 팽창하여 수소저장에 용이하고, 활성탄소섬유는 높은 비표면적과 발달된 미세기공이 수소흡착에 크게 기여한다는 점이 있다. 이러한 기존의 연구로 고려해 볼 때 다공성 탄소재료는 아직 달성되지 못한 DOE의 수소저장 목표치에 도달하기 위한 주요 유망한 후보재료 중의 하나이다.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

천연기념물 법수늪의 토양특성 및 관리방안 (Soil Characteristics and Management Proposal of the Monument Beobsoo Marsh, Korea)

  • 김도균;김용식
    • 한국환경복원기술학회지
    • /
    • 제14권3호
    • /
    • pp.15-32
    • /
    • 2011
  • This study was carried out to investigate the soil characteristics and propose the management for the Monument Beobsoo Marsh, Korea. The soil properties of O.M, $Ca^{2+}$, $Na^+$ and CEC were higher and the soil properties of pH_{1:5}$ and $P_2O_5$ were lower the studied sites than other marsh sites in Korea. Although the Heavy metals such as Pb, Hg, Cd, Cu, Zn, Cr and As were lower compare to the safety standard of soil pollution in Korea, the overall conservation management plan based on long-term monitoring should be considered just because it varied by the point and non-point source pollution within the studied marsh. The source of water pollution varied due to non-point polluting origins such as sewage inlet, degraded terrain for agriculture, fishing sites, sites of removed water grasses, pesticides, chemical fertilizers, as well as fallen leaves. The creation of an artificial marsh is recommended due to the soil environment of the studied sites may be changed owing to the accumulated contaminants from the sources of both of point or non-point contaminants. The establishment of the zones of core, buffer and transition which is basic management structure of the UNESCO MaB could be applied to manage the studied site. Simultaneously the promotion of voluntary participation and education of the local residents are needed.

Development of High Entropy Alloy Film using Magnetron Sputtering

  • Kim, Young Seok;Lim, Ki Seong;Kim, Ki Buem
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.129-129
    • /
    • 2018
  • Hard coating application is effective way of cutting tool for hard-to-machine materials such as Inconel, Ti and composite materials focused on high-tech industries which are widely employed in aerospace, automobile and the medical device industry also Information Technology. In cutting tool for hard-to-machine materials, high hardness is one of necessary condition along with high temperature stability and wear resistance. In recent years, high-entropy alloys (HEAs) which consist of five or more principal elements having an equi-atomic percentage were reported by Yeh. The main features of novel HEAs reveal thermodynamically stable, high strength, corrosion resistance and wear resistance by four characteristic features called high entropy, sluggish diffusion, several-lattice distortion and cocktail effect. It can be possible to significantly extend the field of application such as cutting tool for difficult-to-machine materials in extreme conditions. Base on this understanding, surface coatings using HEAs more recently have been developed with considerable interest due to their useful properties such as high hardness and phase transformation stability of high temperature. In present study, the nanocomposite coating layers with high hardness on WC substrate are investigated using high entropy alloy target made a powder metallurgy. Among the many surface coating methods, reactive magnetron sputtering is considered to be a proper process because of homogeneity of microstructure, improvement of productivity and simplicity of independent control for several critical deposition parameters. The N2 is applied to reactive gas to make nitride system with transition metals which is much harder than only alloy systems. The acceleration voltage from 100W to 300W is controlled by direct current power with various deposition times. The coating layers are systemically investigated by structural identification (XRD), evaluation of microstructure (FE-SEM, TEM) and mechanical properties (Nano-indenter).

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • 주종훈
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF