• Title/Summary/Keyword: Transition metal hydride complexes

Search Result 3, Processing Time 0.015 seconds

Density Functional Theoretical Study on the Hydricities of Transition Metal Hydride Complexes in Water

  • Kang, Suk-Bok;Cho, Young-Seuk;Hwang, Sun-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2927-2929
    • /
    • 2009
  • The hydricities of d$^6$ metal hydride complexes in aqueous solution were calculated by using density functional theoretical (DFT) calculations coupled with a Poisson-Boltzmann (PB) solvent model. Hydricity describes the hydride donor ability of the metal-hydrogen bond, which assists in the study of the mechanism of many catalytic processes and chemical reactions that involve transition metal hydrides. The calculation scheme produced hydricity values that were in good agreement with experimental estimation. The inclusion of a water molecule as a weakly bound ligand to five-coordinate metal complexes gave an improved correlation result.

Synthesis and Structural Characterization of Novel Organohydroborate Hafnocene Complex (η5-C5H5)2Hf{(μ-H)2BC8H14)}Cl

  • Chung, Jang-Hoon;Lee, Sang-Mock
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.759-761
    • /
    • 2006
  • The compound B(C6F5)3 and its variations have been widely employed as alkyl carbanion abstracting reagents to produce metallocene cations for olefin polymerization.1-3 Weakly coordinating anions containing boron can greatly improve the activity of metallocene catalysts used in industrial olefin polymerization4 and thus group IV and V metallocene complexes of the organohydroborate anions have been intensively investigated.5 Recently, many organohydroborate metallocene complexes have been reported by Shore and co-workers.6-8 A common structural feature of those complexes is the three-center two electron M-H-B bond, like that observed in transition metal tetrahydroborate complexes but the reactivity and fluxional behavior of organohydroborate complexes are unlike those of the tetrahydroborate analogues.6 Although many of those metallocenes have been synthesized, few complexes could be used in the olefin polymerization and then this laboratory has been involved in the chemistry of the cyclic organohydroborate anions, and their group IV metallocene derivatives for the catalyst.9 Described here is recent work that led to the preparation of a novel cyclic organohydroborate hafnocene complex (h5-C5H5)2Hf ?(μ-H)2BC8H14 ,Cl. The hafnocene complex contains the three-center two electron bond Hf-H-B10 in which the hydride abstraction for olefin polymerization may occur.