• 제목/요약/키워드: Transient vibration analysis

검색결과 243건 처리시간 0.031초

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

티모센코 회전축을 따라 움직이는 질량의 진동해석 (Vibration Analysis of a Moving Mass Travelling on the Timoshenko Rotating Shaft)

  • 박용석
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.859-864
    • /
    • 2008
  • 티모센포 회전축을 따라 이동하는 이동질량과의 동적상호작용에 관한 연구가 수행되었다. 이동질량의 속력이 티모센코축의 회전속도와 연계된 구속조건식을 도출하였다. 티모센코의 보 이론를 활용하여 시스템의 무차원방정식이 유도되었다. 이동질량의 속력을 포함하는 티모센코 축의 회전속도, 레일리히 계수, 축방향 압축력 등 다양한 무차원 변수들의 영향에 따른 회전축의 처짐과 주파수응답에 대한 해석이 수행되어졌다.

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

Dynamic transient analysis of systems with material nonlinearity: a model order reduction approach

  • Casciati, F.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2016
  • Model Order Reduction (MOR) denotes the theory by which one tries to catch a model of order lower than that of the real model. This is conveniently pursued in view of the design of an efficient structural control scheme, just passive within this paper. When the nonlinear response of the reference structural system affects the nature of the reduced model, making it dependent on the visited subset of the input-output space, standard MOR techniques do not apply. The mathematical theory offers some specific alternatives, which however involve a degree of sophistication unjustified in the presence of a few localized nonlinearities. This paper suggests applying standard MOR to the linear parts of the structural system, the interface remaining the original unreduced nonlinear components. A case study focused on the effects of a helicopter land crash is used to exemplify the proposal.

울진 원자력 5&6호기 Motor Operated Valve의 Equalizing Bypass Pipe Line에 대한 피로수명예측

  • 이진구;황인현;이억섭
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2001년도 공동학술대회
    • /
    • pp.219-224
    • /
    • 2001
  • 본 연구는 울진 원자력발전소 5&6호기 Class 1680, Parallel Gate 16-inch, Motor Operated Valve (Valve ID No. SI-653 and 654)에 부착되는 Equalizing Bypass Pipe Line (EBPL)이 밸브 시스템에 발생시키는 진동하중에 의한 영향을 동적 피로안정성 관점에서 규명하기 위하여 수행된 것이다. Equalizing Bypass Line Part의 최종 설계된 형상을 Fig. 1에 나타내었다. 본 해석을 위하여 운용 중 발생되는 부착부의 잔류진동 레벨이 3축 방향 가속도로 측정되었다. 본 연구에서는 해당 시변 가속도 데이터를 바탕으로 정확한 시간-응력 이력을 얻기 위하여 시간영역에서 천이 진동해석 (Transient Vibration Analysis)을 수행하였으며, 이를 실제적인 피로해석에 활용하였다. 시간영역에서의 천이 진동해석 및 피로해석을 위해 상용유한요소 해석프로그램인 ANSYS (Version 5.6)를 활용하였다.(중략)

  • PDF

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.681-697
    • /
    • 2016
  • The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

개루프제어로 이송되는 공작기계 구조물의 동적 거동을 위한 유한 요소 해석 (Finite element analysis for dynamic behavior of a machine tool structure fed in open loop control)

  • 최진우;이태홍
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.596-602
    • /
    • 2010
  • In this study, a fmite element model was developed for analysis of feeding a structure in open loop control The finite element analysis (FEA) can simulate dynamic behavior of the structure of a machine tool rapidly traveling with a screw feeding driving system. The feeding mechanism was implemented with screw element of the FEA tool used in this study. The procedure was developed for the dynamic transient FEA. First, motion parameters such as jerk and velocity were introduced for the structure to be fed in open loop control When its traveling distance was determined, set-points for the distance were generated based on the motion parameters. The set-points were applied to the FE model constructed for the traveling structure. The FEA was executed and evaluated. In this study, the FEA procedure was applied to the column of a machine tool and the dynamic behavior of the column was evaluated. The FEA helps in evaluation of the motion characteristics of a structure. The convergence time of the structure vibration posterior to feeding termination can be estimated and the stiffness of the flexible structure is also evaluated against jerk, and acceleration. It provides the feeding force which is helpful in selection of the feeding motor.

Transient response of rhombic laminates

  • Anish, Anish;Chaubey, Abhay K.;Vishwakarma, Satyam;Kumar, Ajay;Fic, Stanislaw;Barnat-Hunek, Danuta
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.551-562
    • /
    • 2019
  • In the present study, a suitable mathematical model considering parabolic transverse shear strains for dynamic analysis of laminated composite skew plates under different types of impulse and spatial loads was presented for the first time. The proposed mathematical model satisfies zero transverse shear strain at the top and bottom of the plate. On the basis of the cubic variation of thickness coordinate in in-plane displacement fields of the present mathematical model, a 2D finite element (FE) model was developed including skew transformations in the mathematical model. No shear correction factor is required in the present formulation and damping effect was also incorporated. This is the first FE implementation considering a cubic variation of thickness coordinate in in-plane displacement fields including skew transformations to solve the forced vibration problem of composite skew plates. The effect of transverse shear and rotary inertia was incorporated in the present model. The Newmark-${\beta}$ scheme was adapted to perform time integration from step to step. The $C^0$ FE formulation was implemented to overcome the problem of $C^1$ continuity associated with the cubic variation of thickness coordinate in in-plane displacement fields. The numerical studies showed that the present 2D FE model predicts the result close to the analytical results. Many new results varying different parameter such as skew angles, boundary conditions, etc. were presented.

고속의 출구속도를 가지는 유연매체의 거동해석 및 실험 (The Simulation and Experiment of Flexible Media with High Exit Velocity)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.380-383
    • /
    • 2006
  • The media transport system is used in a printer, a ATM(Automated Tellor Machine), and so on. The media transport system has many problems through miniaturization and rapid transportation of these machines. In the paper feeding mechanism, it is important to feed the sheet without jamming under any conditions. To avoid sheet jamming, first we need to predict the behavior of the sheet exactly. In this paper, the analysis of media behavior is based on J. Stolte's studies. In all of OA machines, a flexible beam or plate is pushed from the channel. The motion may be constrained by guides. This leads to a transient and geometrically nonlinear problem. The behavior of paper is simulated by dynamic elastica theory. The shape of guide is represented by parametric cubic curve. But J. Stolte's studies did not considered contact condition between sheet and guide. So Klarbring's Model. will be applied. And the analysis of flexible media has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Lastly, the simulation of this model is performed, and the experiment is performed for verification of this model. The experimental results of low exit velocity are consistent with the simulation results, however experimental results of high exit velocity do not agree well with analytical results. The reason is that there may be other effects like nip Phenomena

  • PDF

적외선 열화상 응력측정법에 의한 동적 응력집중계수 예측 (Estimation of Dynamic Stress Concentration Factor by Infrared Thermography Stress Analysis)

  • 최만용;강기수;박정학;안병욱;김경석
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.77-81
    • /
    • 2008
  • Structural components subjected to high frequency vibrations, such as those used in vibrating parts of gas turbine engines, are usually required to avoid resonance frequencies. Generally, the operating frequency is designed at more than resonance frequencies. When a vibrating structure starts or stops, the structure has to pass through a resonance frequency, which results in large stress concentration. This paper presents the transient thermoelastic stress analysis of vibrating cantilever beam using infrared thermography and finite element method (FEM). In FEM, stress concentration factor at the 2nd resonance vibration mode is calculated by the mode superposition method of ANSYS. In experiment, stress distributions are investigated with infrared thermography and dynamic stress concentration factor is estimated. Experimental result is agreed with FEM result within 10.6%. The advantage of this technique is a better immunity to contact problem and geometric limitation in stress analysis of small or micro structures.