• Title/Summary/Keyword: Transient vibration analysis

Search Result 243, Processing Time 0.027 seconds

On the extended period of a frequency domain method to analyze transient responses

  • Chen, Kui Fu;Zhang, Qiang;Zhang, Sen Wen
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.211-223
    • /
    • 2009
  • Transient response analysis can be conducted either in the time domain, or via the frequency domain. Sometimes a frequency domain method (FDM) has advantages over a time domain method. A practical issue in the FDM is to find out an appropriate extended period, which may be affected by several factors, such as the excitation duration, the system damping, the artificial damping, the period of interest, etc. In this report, the extended period of the FDM based on the Duhamel's integral is investigated. This Duhamel's integral based FDM does not involve the unit impulse response function (UIRF) beyond the period of interest. Due to this fact, the ever-lasting UIRF can be simply set as zero beyond the period of interest to shorten the extended period. As a result, the preferred extended period is the summation of the period of interest and the excitation duration. This conclusion is validated by numerical examples. If the extended period is too short, then the front portion of the period of interest is more prone to errors than the rear portion, but the free vibration segment is free of the wraparound error.

Dynamic Characteristics of Semi-Active Shock Absorber Using Electrorheological Fluid (ER 유체를 이용한 반능동 완충장치의 동적 특성)

  • Kim, Do-Hyung;Cho, Ki-Dae;Jung, Yong-Hyun;Lee, In;Oshima, Nobuo;Fukuda, Takehito
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-21
    • /
    • 2001
  • Electrorheological(ER) fluid is a kind of smart material with variable shear stress and dynamic viscosity under various electric field intensity. Electric field can control the damping characteristics of ER damper. The objective of this study is the analysis of the performance of ER damper and its application to shock absorber. Idealized nonlinear Bingham plastic shear flow model is used to predict the velocity profile between electrodes. Cylindrical dashpot ER damper with moving electrode is constructed and tested under various electric fields. The analytic and experimental results for damping force are compared and discussed. Drop test system using ER damper is prepared to identify transient vibration characteristics. The rebound is eased as the applied electric field increases. When semi-active control algorithm is applied, rebound phenomenon disappears and vibration energy level decays faster than the case of zero electric field.

  • PDF

A Study on 3D Evaluation and Reduction Method for Vibration of Track-Roadbed due to Railway Load (열차하중으로 인한 궤도-지반의 3D 진동평가 및 저감방법에 관한 연구)

  • Kang, Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • The paper describes four practical cases of railway structure concerning a three-dimensional numerical approach to analyse dynamic soil-structure interaction(SSI)of railway tracks on layered soil under transient load in the time domain. The SSI-Model has been implemented in TDAPIII accounting for nonlinear properties of the track and soil. The approach can be also be used to calculate vibration propagation in the soil and its effect on nearby buildings and structure. The Method is applied to analyse the dynamic response of railway tracks due to a moving wheel set. Finally some sample are given in order to reduce the vibration at the point of emission, at the transmission path and the structure itself.

A Study on the Feed Rate Optimization of a Ball Screw Feed Drive System for Minimum Vibrations (볼스크류 이송계의 진동 최소화를 위한 이송속도 최적화)

  • Choi, Young-Hyu;Hong, Jin-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.962-966
    • /
    • 2004
  • Ball screw feed drive systems have been broadly used in machine tools or precision automatic feed systems. Recently, modern machine tools require high speed and high precision and drive system to achieve high productivity. Unfortunately, a feed drive system, even though it was optimum designed, may experience severe transient vibrations during high-speed operation if its feed rate control is unsuitable. A rough feed rate curve having discontinuity in its acceleration profile causes a serious vibration problem in the feed slide system. This paper presents a feed rate optimization of a machine tool feed slide system, which is driven by a ball screw, for its minimum vibrations. Firstly, a 6-degree-of-freedom lumped parameter model was proposed for the vibration analysis of a ball screw driven machine tool feed drive system. Next, a feed rate optimization of the feed slide was carried out for minimum vibrations. The feed rate curve optimization strategy is to find out the most appropriate acceleration profile having finite jerk. Of course, the optimized feed rate should approximate to the desired one as possible. A genetic algorithm with variable penalty function was used in this feed rate optimization.

  • PDF

Start-up Noise Reduction of Reciprocating Compressor Using Cavity Resonance Analysis (공동 공진해석을 이용한 왕복동식 압축기의 기동소음 저감에 관한 연구)

  • Kim, Min-Chul;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • This work focuses on finding a method to reduce the noise of a hermetic reciprocating compressor during start-up using an acoustical analysis. The noise of compressor during start-up, which is a higher level than that of a normal operating condition, has transient and non-stationary characteristics. The acoustical analysis of compressor cavity is performed to find an effective method to reduce the noise level. In the acoustical analysis, the shape variations of frequency response function in the neighborhood of resonances are tested for three parameters: the height of remained oil, the suction position of refrigerant and the position of driving part. As a conclusion of this result, to reduce the emission noise of compressor during start-up, the height of remained oil should be kept at 16 mm, the refrigerant should be sucked at the cross point of nodal lines of X and Y directional cavity modes, and the driving part should be positioned in the center of cavity.

An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain (시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가)

  • Lee, Don-Chool;Kim, Sang-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.

A virtual shaker testing experience: Modeling, computational methodology and preliminary results

  • Nali, Pietro;Bettacchioli, Alain;Landi, Guglielmo;Gnoffo, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.251-258
    • /
    • 2018
  • This work illustrates the progress of a TAS activity at exploring the challenges and the benefits of the Virtual Shaker Testing (VST) approach. The definition and the validation of new computational methodologies with respect to the state of the art were encouraged throughout this activity. The shaker Finite Element (FE) model in lateral configuration was built for the purpose and it was merged with the SpaceCraft (S/C) FE model, together with the S/C-Shaker adapter. FE matrices were reduced through the Craig-Bampton method. The VST transient analysis was performed in MATLAB(R) numerical computing environment. The closed-loop vibration control is accounted for and the solution is obtained through the fourth-order Runge Kutta method. The use of pre-existing built-in functions was limited by authors with the aim of tracing the impact of all the problems' parameters in the solution. Assumptions and limitations of the proposed methodology are detailed throughout this paper. Some preliminary results pertaining to the current progress of the activity are thus illustrated before the conclusions.

Analysis for Anti-shock Characteristics of Underwater Acoustic Transducers to the Explosive Shock (수중폭발충격에 대한 수중음향 트랜스듀서의 내충격 특성 해석)

  • Goh, Byeong-Jun;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1108-1114
    • /
    • 2006
  • Underwater acoustic transducers can be exposed to a underwater explosive shock caused by various types of underwater weapon. So, a robust anti-shock design is required for transducers to endure the underwater explosive shock. To check the anti-shock characteristics of a transducer, underwater explosive shock test is needed. The conditions of underwater explosive shock test are set up referring to various oversea explosive shock test specifications, and the explosive shock pressure values are calculated according to those conditions. Transient analyses art: carried out for two kinds of underwater acoustic transducer model to verify the anti-shock characteristics. The applied model has robust anti-shock characteristics enough to endure the explosive shock up to 2300 psi. In the future, the transducer design should be certified through the fields test, and modified if needed.

An airflow analysis for the reduction of disk flutter in HDD (HDD의 디스크의 진동 감쇄 설계를 위한 공기흐름해석)

  • Kwon, Seong-Min;Koo, S.C.;Kang, Seong-Woo;Hwang, Tae-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.375-380
    • /
    • 2002
  • As the data storage device market demands higher data transfer rate with higher track density. TMR budget is to be tighter so that even minor improvement is sought in HDD development fields. Disk flutter associated with the turbulent air flow inside the chamber becomes of great interest for the reduction of PES especially at OD. A comparative transient turbulent flow study is presented in this paper for the reduction of disk flutter with different housing designs.

  • PDF