• Title/Summary/Keyword: Transient transfection

Search Result 103, Processing Time 0.027 seconds

The effects of Ohbaesangami (OBSGM) on the mucosa and skin diseases (오배산가미(五倍散加味)가 점막(粘膜) 및 피부질환(皮膚疾患)에 미치는 영향)

  • Roh, Seok-Sun;Hong, Seok-Hoon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.2 s.33
    • /
    • pp.10-35
    • /
    • 2007
  • Objectives : To investigate the effects of Ohbaesangami (OBSGM) on mucosa and skin diseases, anti-microbial and anti-inflammatory tests were performed using several in vitro test models. Results : In anti-microbial test, OBSGM showed the slight inhibitory effect against Propionibacterium acnes (P. acnes) and Staphylococcus aureus (S. aureus). In anti-oxidant test, OBSGM showed the potent radical scavenging activity. In anti-inflammatory test, OBSGM weakly inhibited the lipopolysaccharide (LPS)-induced nitric oxide(NO) release from the RAW 264.7 macrophage cells. OBSGM also inhibited the LPS-induced $interleukin-1{\beta}(IL-1{\beta})$ and cyclooxygenase-2 (COX-2) expressions. The inhibitory effects of OBSGM on macrophage activation was via the inhibition of $NF-{\kappa}B$, evidenced by transient transfection assay. Furthermore, OBSGM markedly inhibited the activation of Jun-N-terminal kinase (JNK) and p38 MAP kinase in RAW 264.7 cells. In skin wrinkle formation assay, OBSGM strongly inhibited collagnease and elastase, whose activities are tightly related with the wrinkle formation. In addition, OBSGM inhibited the activities of MMP-1, MMP-2 on the mRNA levels in RAW 264.7 cells. However, OBSGM did not show an inhibitory potential on tyrosinase activity and melanin synthesis, indicating that it could not be applicable for skin whitening. Conclusion : These results suggest that the anti-inflammatory effect of OBSGM may be due to its inhibitory potentials on the macrophage activation. And, the anti-wrinkle effects of OBSGM may be due to its inhibitory potential on the collagnease and elastase activities. Therefore, OBSGM could be applicable for the treatment of mucosa and skin diseases.

  • PDF

Effects of Dendrobii herba and Punica granatum Extract on the Anti-oxidant, Anti-inflammatory, Anti-wrinkle and Whitening (석곡(石斛), 석류(石榴)의 항산화, 항염증, 주름, 미백에 미치는 영향)

  • HwangBo, Min;Roh, Seok-Sun;Seo, Hyeong-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.3
    • /
    • pp.11-32
    • /
    • 2010
  • Objective : The aim of this study is to determine the effects of Dendrobii herba extract and Punica granatum extract on skin disease and skin beauty. Methods : To investigate in vitro anti-oxidant activity assay, ethanol extracts of medicinal plants tested by DPPH radical, xanthine oxidase activity. In the next experiment, to investigate anti-inflammatory activity assay, examined by relations in NO synthesis, IL-$1{\beta}$, IL-6, TNF-${\alpha}$, NF-${\kappa}B$, COX-2, MAP kinase. To study Skin wrinkle formation effect, we were examined by tyrosinase activities, melanin synthesis in MNT-1 cell. Results : 1. In an anti-oxidant test, Dendrobii and Punica granatum extract showed high radical scavenging activity. 2. In an anti-inflammatory test, Dendrobii herba and Punica granatum extract weakly inhibited the lipopolysaccharide(LPS)-induced nitric oxide(NO) release from RAW 246.7 macrophage cells. Dendrobii herba and Punica granatum extract also inhibited LPS-induced IL-$1{\beta}$ and COX-2 expressions. The inhibitory effect of Dendrobii herba and Punica granatum extract on macrophage activation were via the inhibition of NF-${\kappa}B$, evidenced by transient transfection assay. however, Dendrobii herba and Punica granatum extract did not have any effects about activation of Jun-N-terminal kinase(JNK) and inhibition of p38 MAP kinase in RAW 264.7 cells. 3. In the skin wrinkle formation assay, Dendrobii herba and Punica granatum extract weakly inhibited collagenase and elastase, however it was not statistically significant. 4. In the skin whitening assay, Dendrobii herba and Punica granatum extract weakly inhibited tyrosinase activity, however, it was not statistically significant. They did not have any effect on melanin synthesis, indicating that they could not be applicable for skin whitening. Conclusion : Dendrobii herba extract and Punica granatum extract may play a significant role in skin disease and skin beauty.

The effects of estradiol and its metabolites on the regulation of CYP1A1 expression.

  • Euno, Joung-Ki;Yhong, Sheen-Yhun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.170-170
    • /
    • 2002
  • College of Pharmacy, Ewha womans University, Seoul, 120-750, Korea 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent halogenated aromatic hydrocarbon congener that induces expression of several genes including CYP1A1. Exposure to TCDD results in many toxic actions such as carcinogenesis, hepatotoxicity, immune suppression, and reproductive and developmental toxicity. Dramatic differences in dioxin toxicity have been observed between the sexes of some animal species, suggesting hormonal modulation of dioxin action. Many studies have been reported and propose several mechanisms of anti-estrogenic effects of TCDD. In contrast, the effect of estrogen on the regulation of CYP1A1 are not clear at present. There are several reports showing conflicting results. It seems that induction/inhibition of CYP1A1 may be dependent on cell-type and concentration. The purpose of this study was to investigate the regulation of TCDD-induced CYP1A1 gene expression by estradiol and its metabolites. We examined whether estradiol and its metabolites altered TCDD-mediated induction of CYP1A1 enzyme activity. 17 ${\beta}$ estradiol and 16 ${\alpha}$ estriol at non cytotoxic concentrations caused a significant concentration dependent decline of TCDD-induced EROD activity To determine whether reduced EROD activity reflected altered CYP1A1 mRNA expression, we measured CYP1A1 mRNA level by RT-PCR. And to examine whether estradiol and its metabolites have effects on TCDD-induced CYP1A1 gene expression at the transcription level, we also peformed transient transfection with an AhR responsive reporter plasmid containing the 5' flanking region of the human CYP1A1 gene to examine whether estradiol and its metabolites have effects on TCDD-induced CYP1A1 gene expression at the transcription level.

  • PDF

Induced Pluripotent Stem Cell Generation using Nonviral Vector

  • Park, Si-Jun;Shin, Mi-Jung;Seo, Byoung-Boo;Park, Hum-Dai;Yoon, Du-Hak;Ryoo, Zae-Young
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by etopic expression of transcription factors. iPS cells are indistinguishable from ES cells in terms of morphology and stem cell marker expression. Moreover, mouse iPS cells give rise to chimeric mice that are competent for germline transmission. However, mice derived from iPS cells often develop tumors. Furthermore, the low efficiency of iPS cell generation is a big disadvantage for mechanistic studies. Nonviral plasmid.based vectors are free of many of the drawbacks that constrain viral vectors. The histone deacetylase inhibitor valproic acid (VPA) has been shown to improve the efficiency of mouse and human iPS cell generation, and vitamin C (Vc) accelerates gene expression changes and establishment of the fully reprogrammed state. The MEK inhibitor PD0325901 (Stemgent) has been shown to increase the efficiency of the reprogramming of human primary fibroblasts into iPS cells. In this report, we described the generation of mouse iPS cells devoid of exogenous DNA by the simple transient transfection of a nonviral vector carrying 2A-peptide-linked reprogramming factors. We used VPA, Vc, and the MEK inhibitor PD0325901 to increase the reprogramming efficiency. The reprogrammed somatic cells expressed pluripotency markers and formed EBs.

CAGE, a Novel Cancer/Testis Antigen Gene, Promotes Cell Motility by Activating ERK and p38 MAPK and Downregulating ROS

  • Shim, Hyeeun;Shim, Eunsook;Lee, Hansoo;Hahn, Janghee;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • We previously identified a novel cancer/testis antigen gene CAGE by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera of gastric cancer patients. CAGE is expressed in many cancers and cancer cell lines, but not in normal tissues apart from the testis. In the present study, we investigated its role in the motility of cells of two human cancer cell lines: HeLa and the human hepatic cancer cell line, SNU387. Induction of CAGE by tetracycline or transient transfection enhanced the migration and invasiveness of HeLa cells, but not the adhesiveness of either cell line. Overexpression of CAGE led to activation of ERK and p38 MAPK but not Akt, and inhibition of ERK by PD98059 or p38 MAPK by SB203580 counteracted the CAGE-promoted increase in motility in both cell lines. Overexpression of CAGE also resulted in a reduction of ROS and an increase of ROS scavenging, associated with induction of catalase activity. Inhibition of ERK and p38 MAPK increased ROS levels in cells transfected with CAGE, suggesting that ROS reduce the motility of both cell lines. Inhibition of ERK and p38 MAPK reduced the induction of catalase activity resulting from overexpression of CAGE, and inhibition of catalase reduced CAGE-promoted motility. We conclude that CAGE enhances the motility of cancer cells by activating ERK and p38 MAPK, inducing catalase activity, and reducing ROS levels.

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 by Gamijihwang-tang Via Suppression of Nuclear Factor-B Activation in RAW 264.7 cells

  • Jang Du-Hyun;Kim Ji-Young;Han Eun-Hee;Park Hee-Ok;Kim Dong-Hee;Jeong Hye-Gwang;Yoo Dong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1405-1410
    • /
    • 2005
  • Asthma is recognized today as an inflammatory disease of the lung characterized by acute non-specific airway hypersensitiveness in association with chronic pulmonary inflammation. Gamijihwang-tang(GJT), a fortified prescription of YMJHT, is applied for the treatments of chronic coughing and asthma, and post-delivery coughing and asthma in the gynecology. Also in the clinical practice, GJT is known to be very effective for controlling coughing and asthma as a cold sequoia. In this study, we investigated the effects of GJT on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production, and on the level of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 expression in murine macrophage RAW 264.7 cells. We found that GJT inhibited LPS-induced NO and $PGE_2$ production in a dose dependent manner. Furthermore, GJT inhibited the expression of LPS-induced iNOS and COX-2 protein and mRNA expression in RAW 264.7 macrophages. Treatment with GJT of RAW 264.7 cells transfected with a reporter construct indicated a reduced level of LPS-induced nuclear factor-KB (NF-kB) activity and effectively lowered NF-kB binding as measured by transient transfection assay. These results suggest that the main inhibitory mechanism of the GJT may be the reduction of iNOS and COX-2 gene expression through blocking of NF-kB activation.

Activation of Estrogen Receptor by Bavachin from Psoralea corylifolia

  • Park, Joon-Woo;Kim, Do-Hee;Ahn, Hye-Na;Song, Yun-Seon;Lee, Young-Joo;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.183-188
    • /
    • 2012
  • In this study, we examined the estrogenic activity of bavachin, a component of Psoralea corylifolia that has been used as a traditional medicine in Asia. Bavachin was purified from ethanolic extract of Psoralea corylifolia and characterized its estrogenic activity by ligand binding, reporter gene activation, and endogenous estrogen receptor (ER) target gene regulation. Bavachin showed ER ligand binding activity in competitive displacement of [$^3H$] $E_2$ from recombinant ER. The estrogenic activity of bavachin was characterized in a transient transfection system using $ER{\alpha}$ or $ER{\beta}$ and estrogen-responsive luciferase plasmids in CV-1 cells with an $EC_{50}$ of 320 nM and 680 nM, respectively. Bavachin increased the mRNA levels of estrogen-responsive genes such as pS2 and PR, and decreased the protein level of $ER{\alpha}$ by proteasomal pathway. However, bavachin failed to activate the androgen receptor in CV-1 cells transiently transfected with the corresponding receptor and hormone responsive reporter plasmid. These data indicate that bavachin acts as a weak phytoestrogen by binding and activating the ER.

Role of Oxidative Stress and Mitochondria in Parkinson's Disease

  • Jin, Son-Hyeung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.04a
    • /
    • pp.147-153
    • /
    • 2007
  • Central to developing new treatment strategies for late onset sporadic Parkinson's disease (PD) and early onset familial PD is resolving the enigma of the specific vulnerability exhibited by substantia nigra dopamine (DA) neurons despite multiple risk factors. Neuropathological evidence from both human and experimental models of PD firmly supports a significant role for oxidative stress (OS) and mitochondrial dysfunction in the death of nigral DA neurons. Largely unknown are the genes underlying selective susceptibility of nigral DA neuron to OS and mitochondrial dysfunction and how they effect nigral DA cell death. To overcome the paucity of nigral DA neurons as well as the dilution effect of non-DA cells in brain tissues, we have developed wild type DA cell line model, SN4741 and mutant DJ-1 (-/-) DA cells, appropriate for microarray analysis and differential mitochondrial proteomics. Mutations in the DJ-1 gene (PARK7), localized in cytoplasm and mitochondria, cause autosomal recessive early onset PD. Through microarray analysis using SN4741 cells followed by validation tests, we have identified a novel phylogenically conserved neuroprotective gene, Oxi-a, which is specifically expressed in DA neurons. The knockdown of the gene dramatically increased vulnerability to as. Importantly as down-regulated the expression level of the gene and recovery of its expression via transient transfection exerted significant neuroprotection against as insult. We also have identified altered expression of mitochondrial proteins and other familial PD genes in DJ-1 (-/-) mutant cells by differential mitochondrial proteomics. In DJ-1 (-/-) cells the knockdown of the other familial PD genes (Parkin and PINK1) dramatically increased susceptibility to as. Thus, further functional characterization of the Oxi-$\alpha$ gene family and the mitochondrial alteration in the DJ-1 (-/-) cell model will provide the rationale for the neuroprotective therapy against both sporadic and familial PD.

  • PDF

Bisphenol A Bis(2,3-dihydroxypropyl) ether (BADGE.2H2O) Induces Orphan Nuclear Receptor Nur77 Gene Expression and Increases Steroidogenesis in Mouse Testicular Leydig Cells

  • Ahn, Seung-Won;Nedumaran, Balachandar;Xie, Yuanbin;Kim, Don-Kyu;Kim, Yong Deuk;Choi, Hueng-Sik
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.74-80
    • /
    • 2008
  • Bisphenol A bis (2,3-dihydroxypropyl) ether ($BADGE.2H_2O$) is a component of commercial liquid epoxy resins commonly used in the food-packing industry and in dental sealants. There is evidence that it has significant estrogenic activity. Nur77 plays a crucial role in the regulation of certain genes involved in LH-mediated steroidogenesis in testicular Leydig cells. It was previously demonstrated that Bisphenol A (BPA) stimulates Nur77 gene induction and steroidogenesis. In this study, we investigated the effects of $BADGE.2H_2O$ on Nur77 gene expression and steroidogenesis. Northern blot analysis showed that it increased the expression of Nur77 mRNA and protein, and transient transfection assays demonstrated that it increased the promoter activity and transactivation of Nur77. It also increased the expression of certain steroidogenic genes, such as StAR and $3{\beta}$-HSD. Finally, over-expression of a dominant negative Nur77 cDNA via adenoviral infection reduced $BADGE.2H_2O$-mediated progesterone biosynthesis. These results indicate that $BADGE.2H_2O$ disrupts testicular steroidogenesis by increasing Nur77 gene expression.

The PPLA Motif of Glycogen Synthase Kinase 3β Is Required for Interaction with Fe65

  • Lee, Eun Jeoung;Hyun, Sunghee;Chun, Jaesun;Shin, Sung Hwa;Lee, Kyung Eun;Yeon, Kwang Hum;Park, Tae Yoon;Kang, Sang Sun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.100-105
    • /
    • 2008
  • Glycogen synthase kinase $3{\beta}$ (GSK $3{\beta}$) is a serine/threonine kinase that phosphorylates substrates such as ${\beta}$-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK $3{\beta}$ is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK $3{\beta}$ catalytic domain also contains a putative WW domain binding motif ($^{371}PPLA^{374}$), and we observed, using a pull down approach and co-immunoprecipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK $3{\beta}$ and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK $3{\beta}$. Finally, in transient transfection assays interaction of GSK $3{\beta}$ (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK $3{\beta}$ AALA mutant ($^{371}AALA^{374}$) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK $3{\beta}$ AALA mutant was significantly reduced compared to that of GSK $3{\beta}$ wild type. Thus, our observations indicate that GSK $3{\beta}$ binds to Fe65 through its $^{371}PPLA^{374}$ motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK $3{\beta}$.