• 제목/요약/키워드: Transient thermal behavior

검색결과 160건 처리시간 0.031초

A qualitative evaluation method for engine and its operating-envelope using GSP (Gas turbine Simulation Program)

  • Kyung, Kyu-Hyung;Jun, Yong-Min;Yang, Soo-Seok;Choi, Dong-Whan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.848-853
    • /
    • 2004
  • Regarding to the project SUAV (Smart Unmanned Aerial Vehicle) in KARI (Korea Aerospace Research Institute), several engine configurations has been evaluated. However it's not an easy task to collect all the necessary data of each engine for the analysis. Usually, some kind of modeling technique is required in order to determine the unknown data. In the present paper a qualitative method for reverse engineering is proposed, in order to identify some design patterns and relationships between parameters. The method can be used to estimate several parameters that usually are not provided by the manufacturer. The method consists of modeling an existing engine and through a simulation, compare its transient behavior with its operating envelope. In the simulation several parameters such as thermodynamics, performance, safety and mechanics concerning to the definition of operation-envelope, have been discussed qualitatively. With the model, all engine parameters can be estimated with acceptable accuracy, making possible the study of dependencies among different parameters such as power-turbine total inertia, TIT, take-off time and part load, in order to check if the engine transient performance is within the design criteria. For more realistic approach and more detailed design requirements, it will be necessary to enhance the compressor map first, and more realistic estimated values must be taken into account for intake-loss, bleed-air and auxiliary power extraction. The relative importance of these “unknown” parameters must be evaluated using sensitivity analysis in the future evaluation. Moreover, fluid dynamics, thermal analysis and stress analysis necessary for the resulting life assessment of en engine, will not be addressed here but in a future paper. With the methodology presented in the paper was possible to infer the relationships between operation-envelope and engine parameters.

  • PDF

배기의 유속분포가 CDPF의 재생 시 비정상적 열적 거동에 미치는 영향 (The Effect of Flow Distribution on Transient Thermal Behaviour of CDPF during Regeneration)

  • 정수진;이점주;최창호
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.10-19
    • /
    • 2009
  • The working of diesel particulate filters(DPF) needs to periodically burn soot that has been accumulated during loading of the DPF. The prediction of the relation between an uniformity of gas velocity and soot regeneration efficiency with simulations helps to make design decisions and to shorten the development process. This work presents a comprehensive combined 'DOC+CDPF' model approach. All relevant behaviors of flow fluid are studied in a 3D model. The obtained flow fields in the front of DPF is used for 1D simulation for the prediction of the thermal behavior and regeneration efficiency of CDPF. Validation of the present simulation are performed for the axial and radial direction temperature profile and shows goods agreement with experimental data. The coupled simulation of 3D and 1D shows their impact on the overall regeneration efficiency. It is found that the flow non-uniformity may cause severe radial temperature gradient, resulting in degrading regeneration efficiency.

설계하중 및 고온을 받은 초고강도 콘크리트의 잔존압축강도 및 변형 특성 평가 (Evaluation on Residual Compressive Strength and Strain Properties of Ultra High Strength Concrete with Design Load and Elevated Temperature)

  • 윤민호;김규용;남정수;윤종일;배창오;최경철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.263-264
    • /
    • 2012
  • In this study, the ultra high strength concrete which have 100, 150, 200MPa took the heat from 20℃ to 70 0℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

Analytical solution of the Cattaneo - Vernotte equation (non-Fourier heat conduction)

  • Choi, Jae Hyuk;Yoon, Seok-Hun;Park, Seung Gyu;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.389-396
    • /
    • 2016
  • The theory of Fourier heat conduction predicts accurately the temperature profiles of a system in a non-equilibrium steady state. However, in the case of transient states at the nanoscale, its applicability is significantly limited. The limitation of the classical Fourier's theory was overcome by C. Cattaneo and P. Vernotte who developed the theory of non-Fourier heat conduction in 1958. Although this new theory has been used in various thermal science areas, it requires considerable mathematical skills for calculating analytical solutions. The aim of this study was the identification of a newer and a simpler type of solution for the hyperbolic partial differential equations of the non-Fourier heat conduction. This constitutes the first trial in a series of planned studies. By inspecting each term included in the proposed solution, the theoretical feasibility of the solution was achieved. The new analytical solution for the non-Fourier heat conduction is a simple exponential function that is compared to the existing data for justification. Although the proposed solution partially satisfies the Cattaneo-Vernotte equation, it cannot simulate a thermal wave behavior. However, the results of this study indicate that it is possible to obtain the theoretical solution of the Cattaneo-Vernotte equation by improving the form of the proposed solution.

과냉 액체질소 내에서 순간적 열확산 실험 (Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen)

  • 최진혁;하찬준;변정주;장호명;김호민;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동 (Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature)

  • 한병찬;권영진;김재환
    • 콘크리트학회논문집
    • /
    • 제19권2호
    • /
    • pp.189-197
    • /
    • 2007
  • 터널 라이닝은 대형 화재 등과 같은 고온에 노출될 경우, 폭렬이 발생하고 이로 인해 급격한 온도 전달 및 내력 저하로 구조체 붕괴의 원인이 될 수 있다는 것이 여러 사례를 통해 보고되고 있다. 본 연구는 터널라이닝의 내화뿜칠 재료로 매우 적합할 것으로 판단되는 고인성 고내화성 시멘트 복합체(FR-ECC)를 개발하고 이의 역학적 특성 및 내화 성능을 평가하고자 하였다. 이를 위하여 FR-ECC에 있어서의 배합 요인을 실험 변수로 내화 시험을 실시하였으며 비정상 온도 분포 해석 기법(nonlinear transient heat flow analysis)을 이용하여 이를 해석적으로 묘사 검증되었다. 또한, 실험 결과를 통해 검증된 해석 기법을 이용하여 터널라이닝에 대한 열전달 해석을 수행하여 FR-ECC를 내화 2차 라이닝재로 이용하는 경우의 거동 특성을 분석하였다. 실험 결과 내화 성능을 향상시키기 위한 FR-ECC의 최적 배합은 PVA 섬유 또는 PP 섬유 혼입률 $V_f=2.0%$, 다공성 세라믹재 혼입률 $V_C=3.6%$, 공기량 $V_A=15%$로 나타났으며, 검증된 비정상 온도 분포 해석 기법을 이용하여 기존 터널에 40mm FR-ECC를 추가 라이닝 한 경우에 대한 해석 결과, 콘크리트 및 철근의 온도 분포가 모두 $350^{\circ}C$ 이내에서 제어되어 터널 내 콘크리트 및 철근에 대한 화재 피해를 방지할 수 있을 것으로 판단되었다.

Investigation of the gas Dynamics in an Upflow OMVPE Reactor by Raman Spectroscopy

  • Park, Chinho;Timoghy J. Anderson
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 12th KACG Technical Meeting and the 4th Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.223-228
    • /
    • 1997
  • The gas dynamics in a stagnation point upflow OMVPE reactor were studied by Raman spectroscopy. The gas temperature was measured as a function of inlet gas velocity and aspect ratio for both H$_2$ and N$_2$ carrier gases. The centerline temperature gradient was latger at higher inlet velocities and with the use of N$_2$, and only weakly dependent on the aspect ratio. a tracer molecule, CH$_4$, was used to investigate the steady state behavior of reactants in the reactor, and the use of a sweeping flow was found to be a suitable method for preventing wall deposition. The transient switching response of the gas manifold was also investigated. Under certain conditions (low velocities, unmatched flows) recirculation flows were apparent. Numerical calculations of the reactor gas dynamics gave reasonable agreement with experimental results when detailed thermal boundary conditions were included.

  • PDF

전기설비용 PET의 절연파괴와 공간전하효과에 관한 연구 (A Study on the Effect of Space Charge and tole Dielectric Breakdown of PEF for Electric Installation)

  • 윤성도;박상현;정학수;서장수;박중순;국상훈
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1992년도 추계학술발표회논문집
    • /
    • pp.37-40
    • /
    • 1992
  • This paper examined the existance behavior of charged particles by measuring polarity inversion current Thermal Stimulate Current (TSC) and analysed appearance mechanism of polarity inversion current Peak and Also investigated relation between ionic space charge format ion and dielectric breakdown by measuring D.C breakdown impulse breakdown D.C - impulse superposition as a sample of FET. As a result. lie found that dielectric breakdown is likely to happen due to ionic space charge at the transient state when applied polarity inversion voltage and that charged partion of TSE Peak at the high temperature was the same as that of polarity inversion current. Also there was no effect on ionic space charge about the dielectric breakdown in stationary state when applied D.C voltage.

  • PDF

폐열회수 보일러의 동특성 시뮬레이션 (Dynamic Simulation of Heat Recovery Steam Generator)

  • 이기현;이동수;조창호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.847-852
    • /
    • 2001
  • A thorough understanding of the transient behavior during load following and start-up is essential in the design and operation of an heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Doosan Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for an heat recovery steam generator.

  • PDF