• 제목/요약/키워드: Transient emissions

검색결과 66건 처리시간 0.027초

가솔린 엔진의 밸브타이밍 변화가 부분부하 조건에서 잔류가스량 및 연소특성에 미치는 영향 (Effect of Value Timing on Residual Gas Fraction and Combustion Characteristics at Part Load Condition in an SI Engine)

  • 김철수;송해박;이종화;유재석;조한승
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.26-33
    • /
    • 2000
  • In-cylinde flow and mixture formation are key contributors to both idle stability and combustion stability at part load condition in SI engine. The real time measurements of air-fuel ration and in- cylinder residual gas fraction are particularly important to obtain a better understanding of the mechanisms for combustion and emissions especially during cold start and throttle transient condition. This paper reports the cycle resolved measurements of residual gas fraction and equivalence ration near speak plug with value timing change and their effects on combustion characteristics at part load. The results showed that the effect of intake value opening on the residual gas fraction was smaller than that of exhaust valve closing because of the decreases of exhaust gas reverse flow from exhaust port. The variation of equivalence ratio near spark plug increased with the increase of value overlap and it closely related with heat release rate and combustion stability

  • PDF

PFI용 2홀 2분무 인젝터의 비정상 분무 특성 (Unsteady spray characteristics of two-holes two-sprays type injectorin PFI gasoline engine)

  • 김범준;이재호;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제10권1호
    • /
    • pp.43-52
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI (Port Fuel Injection) gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from 2hole 2spray type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

  • PDF

바이오 디젤 적용에 따른 대형엔진의 배출가스 특성 (The Emission Characteristics of Bio-Diesel Fuel in Heavy-Duty Engine)

  • 김선문;엄명도;홍지형
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.499-506
    • /
    • 2010
  • Recently, a great deal of attention have been directed to the use of alternative fuels as a means to reduce vehicular emissions. As one of the promising alternative fuels, bio-diesel has advantages of a wide adaptability without retrofit of diesel engine. It is also effective enough to reduce CO, THC, $SO_x$, polycyclic aromatic hydrocarbons (PAHs) and PM. In this study, we investigated the emission characteristics of biofuels between different operating conditions, i.e., engine speed (1,400 rpm and 2,300 rpm), engine load (10% and 100%), bio-diesel blending (BD0, BD5 and BD20), and recirculation (EGR) rate of exhaust gas (0% and 20%). Relative performance of the system was evaluated mainly for the greenhouse gases ($CH_4$, $N_2O$ and $CO_2$). In addition, emission characteristics of ND-13 mode were also tested against both greenhouse gases and other airborne pollutants under emission regulation. The relative composition of bio-diesel has shown fairly clear effects on the emission quantities of CO, THC, and PM emission, although it was not on $NO_x$ and greenhouse gases. EGR rate has shown trade-off characteristics between $NO_x$ and PM.

스파크 점화기관에서 이차 공기 분사가 냉시동시 THC 배출량에 미치는 영향에 관한 실험적 연구 (Experimental Study of the Effect of Secondary Air Injection on the Cold Start Total Hydrocarbon Emissions in a Spark Ignition Engine)

  • 이승재;함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2003
  • Engine emission regulations are becoming more stringent nowadays. In cold transient regime, about 80% THC is exhausted to the atmosphere in the first 200s (US FTP cycles). Accordingly, reducing emission levels in the cold period immediately after the engine start before the catalysts reach their working temperature will be an especially critical factor in meeting more stringent regulations in the future. In this study, the total hydrocarbon quantities are measured using a Fast FID with gasoline fuel for a 4-cylinde. Sl engine, including Secondary Air Injection (SAI) system. Commercial SAI device's direction is reverse to the exhaust flow. In this study, a swirl flow type SAI system which is positioned between the exhaust manifold and exhaust port, was developed. We compared the swirl type secondary air injection with a commercial secondary air injection of .everse flow. The swirl type SAI showed better results in reducing HC by 26% than the commercial flow type SAI of reverse flow which was caused by the better mixing between the exhaust gas and the secondary air.

대형디젤엔진 배출가스 저감을 위한 DPF의 재생특성 연구 (A Study on Characteristics of DPF for Heavy-duty Diesel Engine on Pollutant Emission Reduction)

  • 엄동섭;이승호;오상기
    • 동력기계공학회지
    • /
    • 제12권5호
    • /
    • pp.34-39
    • /
    • 2008
  • The combustion purpose of diesel engine is to reduce the emission of green gas and to produce high output. Generally, the regulation matter of emission gas is largely diveded by 'THC', 'NOx', 'CO' and 'PM'. Among those matters, the most problem is to disgorge into 'PM', the character of diesel combustion. Diesel PM can be controlled using Diesel Particulate Filter, which can effectively reduce the level of soot emissions to ambient background levels. $NO_2$ generated by the DOC is used to combust the carbon collected in the DPF at low temperature. To certificate DPF device that is suitable to domestic circumstances, it is necessary to exactly evaluate the DPF devices according to the regulation of DPF certificate test procedure fur retrofit. To do carry out the above-mentioned description the understanding of that regulation like the standard of PM reduction is needed. In this study the test procedure including test cycle and BPT test condition was examined, and also the test result for specific DPF was analyzed. In every test like field test, PM reduction efficiency test and Seoul-10 mode test, no defect was showed.

  • PDF

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • 한국환경보건학회지
    • /
    • 제32권6호
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

국내에서 운영중인 시내버스의 시험모드에 따른 배출특성 비교 연구 (A Study on the Comparison of Emission Characteristics of In-Use Urban Bus by Test Modes)

  • 전상우;엄명도;홍지형
    • 한국대기환경학회지
    • /
    • 제26권4호
    • /
    • pp.403-411
    • /
    • 2010
  • Recently, emission tests for heavy-duty vehicles have been conducted by heavy-duty engine dynamometer. But, it contains weaknesses that present inconveniences to install and uninstall engines and limitations to reflect on practical characteristics for vehicle driving. On the other hand, chassis dynamometer test is able to differentiate characteristics of real driving patterns due to the reason that vehicles can be examined by utilizing chassis dynamometer. This study aimed at comparing the characteristic of emitting regulatory substances of urban buses on Heavy-duty chassis dynamometer. The characteristic was analyzed based on vehicle speed by using both domestic and overseas developed heavy-duty vehicle test modes. As a result, this work attempted to investigate possibilities to take advantage of Heavy-duty vehicle test modes as a method to manage emissions from heavy-duty vehicles.

2륜 자동차용 촉매변환기내 배기맥동압력이 유동균일도에 미치는 영향 (Effects of Flow Uniformity on Exhaust Pulsation Pressure in Catalytic Converter for Motorcycle)

  • 이중섭;정한식;정효민;이철재;배태열
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.108-114
    • /
    • 2007
  • This research represents the catalytic converter for application in the motorcycle. We have to consider about catalytic converter for reducing exhaust gas strength regarding the displacement volume enlargement. The catalytic converter has been widely used to satisfy the regulations of pollutant emissions from automobiles. Recently, all catalytic converter researches are about automobile. Study about motorcycle catalytic converter has not been conducted yet. In this study, flow uniformity and pressure distribution were simulated in the monolithic inlet of catalytic converter for motorcycle. Exhaust pulsation pressure was set as transient condition about. It was found that flow uniformity shown in base model (0.85) was lower than megaphone model (0.98).

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

재생에너지원 보급에 따른 전력계통 안정도 분석 (Analysis of Power System Stability by Deployment of Renewable Energy Resources)

  • 곽은섭;문채주
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.633-642
    • /
    • 2021
  • 제한적인 탄소배출의 필요성과 연계되는 전력수요 증가는 재생에너지산업에서 폭발적인 상승을 가져오고 있다. 전력계통에서 전기공급은 항상 전기수요와 균형을 맞추어야 할 필요가 있고, 안전하고 믿을만한 안정적인 운영을 유지하기 위하여 계통손실이 발생한다. 높은 비율의 재생에너지 보급을 갖는 전력계통에서 과도 안정도, 미소신호 안정도 및 주파수 안정도와 같은 넓은 범위의 3가지의 난제가 있다. 과도안정도는 선로계전기 동작이나 발전기 탈락과 같은 장애에 대한 계통응답을 해석하는 것이다. 미소신호 안정도는 계통관성 저하에 따른 전압불안정, 주파수 급변, 전력진동 등이 발생가능한 계통에서 조그만 증분같은 작은 동요가 일어날 때 전력계통 동기를 유지하기 위한 계통의 기능이다. 주파수 안정도는 발전과 부하 사이에 심한 불균형이 발생하는 중대 계통혼란에서도 정상 주파수를 유지하기 위한 전력계통의 기능으로 간주한다. 본 논문에서 재생에너지 보급계획에 따른 계통모의를 수행하여 3종류 안정도를 검토하며, 또한 재생에너지원이 계통안정도에 미치는 영향을 분석한다.