• Title/Summary/Keyword: Transient emissions

Search Result 66, Processing Time 0.025 seconds

The Effects of Eye Lateralization on Transient Evoked Otoacoustic Emissions of Auditory Function (측방 눈 주시가 유발이음향방사 청각기능에 미치는 영향)

  • Joo, Seokhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.4
    • /
    • pp.131-140
    • /
    • 2019
  • Purpose : The purpose of this study was to investigate the interrelationship between eye movement and auditory function through the effects of eye lateralization on transient evoked otoacoustic emissions of auditory function. Methods : 25 subjects with complete set of ears were used in this study, which composed of 12 males and 13 females with pure tone threshold of below 25 dB without otolaryngology were evaluated. Each of the patient has a visual acuity of greater than 1.0 after correction, and has no problems with eye disease, eye movement, and human parallel system. In a dark silent room, the subjects sat on a chair with their heads fixed on a headrest. The tests were performed by asking the patients to look at a fixed red light dot on a light bar in front of them. This light was directed to the front, right and left sides of the subject at an angle of 40 ° In the presence of the stimulus sound in the ipsilateral ear, the transient evoked otoacoustic emissions of the ipsilateral ear was measured at the straight, right and left fixation. In order to evaluate the transient evoked otoacoustic emissions through the efferent auditory pathway, the transient evoked otoacoustic emission values of the contralateral ear were measured at the straight, right and left fixation. These measurements were taken at frequencies of 1 kHz, 1.4 kHz, 2.0 kHz, 2.8 kHz and 4 kHz, respectively. Results : Transient evoked otoacoustic emissions caused by lateral movement of the eye showed significant changes at 1.4 KHz and 2 KHz of the afferent pathway of the ipsilateral ear. Also, significant changes were observed at 1.4 KHz and 4 KHz of the efferent pathway of the contralateral ear. Conclusion : These results indicated that there is a close relationship between eye movement and auditory cochlea. In the future, further studies considering more diverse subjects and age groups will be needed.

EFFECTS OF METHANOL-REFORMULATED FUELS ON TRANSIENT CHARACTERISTICS FOR AN SI ENGINE

  • Choi, S.H.;Kim, G.B.;Chang, Y.J.;Jeon, C.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.311-319
    • /
    • 2004
  • There are many methods to test engine emissions depending on the regulations used such as FTP-75(CYS-75) mode, 10-15 mode and ECE-15 mode. Most of these modes consist of transient conditions such as cranking, rapid acceleration or deceleration modes. In this experimental research, the transient characteristics including cranking and accelerating mode in SI engines were studied to compare pure gasoline with methanol-reformulated fuels for performance and exhaust emissions. The results show that methanol-reformulated fuels have a better emissions reduction rate than that of pure gasoline especially for HC, CO and NOx emissions during cranking mode. The acceleration performances conform to the results of the distillation curve and the CO concentration for RM50 varies slightly in acceleration mode.

A Control Strategy of Fuel Injection Quantity and Common-rail Pressure to Reduce Particulate Matter Emissions in a Transient State of Diesel Engines (승용디젤엔진의 과도구간 입자상물질 저감 및 운전성능 향상을 위한 연료분사량 및 커먼레일압력 제어전략)

  • Hong, Seungwoo;Jung, Donghyuk;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.623-632
    • /
    • 2015
  • This study proposes a control strategy of the common rail pressure with a fuel injection limitation algorithm to reduce particulate matter (PM) emissions under transient states. The proposed control strategy consists of two parts: injection quantity limitation and rail pressure adaptation. The injection limitation algorithm determines the maximum allowable fuel injection quantity to avoid rich combustion under transient states. The fuel injection quantity is limited by predicting the burned gas rate after combustion; however, the reduced injection quantity leads to deterioration of engine torque. The common rail pressure adaptation strategy is designed to compensate for the reduced engine torque. An increase of the rail pressure under transient states contributes to enhancement of the engine torque as well as reduction of PM emissions by promoting atomization of the injected fuel. The proposed control strategy is validated through engine experiments. The rail pressure adaptation reduced the PM emission by 5-10% and enhanced the engine torque up to 2.5%.

An Experimental Study of Cyclic Combustion Characteristics at Starting and Idling Phase on Spark Ignition Engine (SI 엔진의 시동 및 아이들 구간에서의 점화시기에 따른 싸이클별 연소현상에 관한 실험적 연구)

  • Choi, Seong-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3317-3322
    • /
    • 2007
  • THC(Total Hydrocarbon) emissions during cold start and warm-up phase constitute the majority of THC emissions during the FTP-75 mode. As the basic approach to improve the emission performance of Gasoline engine during transient phase, the effect of spark timing retard from MBT on THC emission characteristics is studied by engine test using a Fast response Flame Ionization Detector(FFID). A cyclic analysis of the combustion process shows that high THC emissions are produced first few cycles during the transient phase. This paper presents the results of engine performance and emission of Gasoline engine with various spark timing. consequently, This paper was focused on the combustion phenomena with various spark timing during transient phase which was analyzed by Fast response Flame Ionization Detector (FFID) equipment to measure the cyclic THC emission characteristics.

  • PDF

The effect of dynamic operating conditions on nano-particle emissions from a light-duty diesel engine applicable to prime and auxiliary machines on marine vessels

  • Lee, Hyungmin;Jeong, Yeonhwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2012
  • This study presents the nano-sized particle emission characteristics from a small turbocharged common rail diesel engine applicable to prime and auxiliary machines on marine vessels. The experiments were conducted under dynamic engine operating conditions, such as steady-state, cold start, and transient conditions. The particle number and size distributions were analyzed with a high resolution PM analyzer. The diesel oxidation catalyst (DOC) had an insignificant effect on the reduction in particle number, but particle number emissions were drastically reduced by 3 to 4 orders of magnitude downstream of the diesel particulate filter (DPF) at various steady conditions. Under high speed and load conditions, the particle filtering efficiency was decreased by the partial combustion of trapped particles inside the DPF because of the high exhaust temperature caused by the increased particle number concentration. Retarded fuel injection timing and higher EGR rates led to increased particle number emissions. As the temperature inside the DPF increased from $25^{\circ}C$ to $300^{\circ}C$, the peak particle number level was reduced by 70% compared to cold start conditions. High levels of nucleation mode particle generation were found in the deceleration phases during the transient tests.

Effect of semi-return fuel supply system on the startability and HC/NOx emissions during cold transient starting phase in an LPi engine (LPG성상에 따른 세미리턴방식 LPi엔진의 시동성 및 싸이클 별 HC/NOx 배출 특성)

  • Kim, Ju-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2910-2915
    • /
    • 2008
  • This paper was investigated the behaviors of the engine and combustion phenomena for various LPG compositions in the semi-return type system, which is not recircurated to LPG tank through furl rail, applied LPi engine during a cold idle condition and including a cold start of the engine. Cyclic HC and NOx emissions were measured at exhaust port to examine their formation mechanical and reduction mechanical with fast response gas analyzers. Various ignition timing is experimented to study the characteristics of combustion phenomena, HC/NOx emissions during fast idle. Also, this study was investigated start delay time, cylinder pressure, HC/NOx emissions, Mass Fraction Burned, starting time to evaluate performance of transient cold startability. Compared to the return type system, the semi-return type system have advantages in point of production cost and equivalent performance of engine starting time and pressure settling time.

  • PDF

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

LOW FUEL CONSUMPTION AND LOW EMISSIONS - ELECTROMECHANICAL VALVE TRAIN IN VEHICLE OPERATION

  • Pischinger, M.;Salber, W.;Staay, F.V.D.;Baumgarten, H.;Kemper, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 2000
  • The electromechanical valve train (EMV) technology allows for a reduction in fuel consumption while operating under a stoichiometric air-fuel-ratio and preserves the ability to use conventional exhaust gas aftertreatment technology with a 3-way-catalyst. Compared with an engine with a camshaft-driven valve train, the variable valve timing concept makes possible an additional optimization of cold start, warm-up and transient operation. In contrast with the conventionally throttled engine, optimized control of load and in-cylinder gas movement can be used for each individual cylinder and engine cycle. A load control strategy using a "Late Intake Valve Open" (LIO) provides a reduction in start-up HC emissions of approximately 60%. Due to reduced wall-wetting, the LIO control strategy improves the transition from start to idle. "Late Exhaust Valve Open" (LEO) timing during the exhaust stroke leads to exhaust gas afterburning and, thereby, results in high exhaust gas temperatures and low HC emissions. Vehicle investigations have demonstrated an improved accuracy of the air-fuel-ratio during transient operation. Results in the New European Driving Cycle have confirmed a reduction in fuel consumption of more than 15% while meeting EURO IV emission limits.

  • PDF

Temperature and exhaust gas conversion efficiency of catalytic converters for natural gas vehicles (천연가스자동차 촉매의 온도분포 및 배기정화 특성)

  • Choe, Byeong-Cheol;Kim, Yeong-Gil;Sakai, Takayuki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.205-212
    • /
    • 1998
  • Experiments were conducted to investigate the temperature profile and the emissions conversion efficiency of catalytic converters for natural gas vehicles. Two types of the catalyst structure and several transient engine operating conditions were used. The dual-bed catalyst effectively reduced the emissions in a transient period due to the low heat capacity of the front bed. The lanthanoid additives were effective in improving catalyst durability. When the natural gas fueled engine were operated outside of a very narrow window of excess air ratio (from 0.993 to 1.004), the HC and NOx conversion efficiency dropped off. The drop-off were especially fast on the lean side of the window.

Fast Light-Off of Catalyst using Cranking Exhaust Gas Ignition (시동 배기가스 점화기술을 이용한 촉매의 예열시간 단축)

  • 조용석;엄인용;이윤석;김득상;김충식;천준영;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • In order to satisfy the ULEV emissions regulation, fast light-off of a catalyst is essential for reduction of HC and CO emissions during the cold start. Cranking Exhaust Gas Ignition(CEGI) method developed in this study showed that the catalyst reaches the light-off temperature in a few seconds. The CEGI stops the ignition signal for a few seconds during the cranking period, so the unburned fuel-air mixture bypasses the combustion chamber and flows through the exhaust manifold. When the unburned mixture reaches two glow plugs installed upstream of the catalyst, it burns and releases the thermal energy to heat up the catalyst, In the FTP-75 vehicle tests, the CEGI showed that the exhaust emissions reduced by 47.7% for THC and by 88.6% for CO in the cold-transient phase of the test.

  • PDF