• Title/Summary/Keyword: Transient Technique

Search Result 725, Processing Time 0.027 seconds

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Suh, Myung-Koo;Sung, Woo-Kyung;Li, Guo-Sheng;Heo, Seong-Ung;Hwang, Hyun-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.318-324
    • /
    • 2003
  • A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.

A Nonlinear Speed Control of a Permanent Magnet Synchronous Motor Using a Sequential Parameter Auto-Tuning Algorithm for Servo Equipments (서보 설비를 위한 순차적 파라미터 자동 튜닝 알고리즘을 사용한 영구자석 동기전동기의 비선형 속도 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • A nonlinear speed control of a PMSM using a sequential parameter auto-tuning algorithm for servo equipments is presented. The nonlinear control scheme gives an undesirable output performance under the mismatch of the system parameters and load conditions. Recently, to improve the performance, an adaptive linearization scheme, a sliding mode control and an observer-based technique have been reported. Although a good performance can be obtained, the performance is not satisfactory any more under specific conditions such as a large inertia variation, a fast speed transient or an increased sampling time. The simultaneous estimation of principal parameters giving a direct influence on speed dynamics is generally not simple. To overcome this problem, a a sequential parameter auto-tuning algorithm at start-up is proposed, where dominant parameters are estimated in a prescribed regular sequence based on the method that one parameter is estimated during each interval. The proposed scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through simulations and experiments.

TASK TYPES AND ERROR TYPES INVOLVED IN THE HUMAN-RELATED UNPLANNED REACTOR TRIP EVENTS

  • Kim, Jaew-Han;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.615-624
    • /
    • 2008
  • In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1 %), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

Prediction of Protein-Protein Interaction Sites Based on 3D Surface Patches Using SVM (SVM 모델을 이용한 3차원 패치 기반 단백질 상호작용 사이트 예측기법)

  • Park, Sung-Hee;Hansen, Bjorn
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Predication of protein interaction sites for monomer structures can reduce the search space for protein docking and has been regarded as very significant for predicting unknown functions of proteins from their interacting proteins whose functions are known. In the other hand, the prediction of interaction sites has been limited in crystallizing weakly interacting complexes which are transient and do not form the complexes stable enough for obtaining experimental structures by crystallization or even NMR for the most important protein-protein interactions. This work reports the calculation of 3D surface patches of complex structures and their properties and a machine learning approach to build a predictive model for the 3D surface patches in interaction and non-interaction sites using support vector machine. To overcome classification problems for class imbalanced data, we employed an under-sampling technique. 9 properties of the patches were calculated from amino acid compositions and secondary structure elements. With 10 fold cross validation, the predictive model built from SVM achieved an accuracy of 92.7% for classification of 3D patches in interaction and non-interaction sites from 147 complexes.

Rib-Dimple Compound Cooling Techniques in a Gas Turbine Blade Cooling Channels with an Aspect ratio (4:1) (4:1 종횡비를 갖는 가스터빈 블레이드 냉각 유로에서의 립-딤플 복합 냉각 특성 연구)

  • Choi, Yong-Duck;Kim, Seok-Beom;Lee, Yong-Jin;Kim, Jin-Kon;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.304-310
    • /
    • 2010
  • Heat transfer coefficients in a dimpled channel, a ribbed channel, and a rip-dimple compound channel were measured by the transient liquid crystal technique. The channel aspect ratio, the rib height, the rip pitch, and the rib angle were 4:1, 6 mm, 60 mm and $60^{\circ}$, respectively. The dimple diameter and the center-to-center distance were 6mm and 7.2 mm, respectively, and the Reynolds number range was 30,000-50,000. Results showed that the heat transfer coefficients were increased by the angled rib. For the dimple-rib compound cooling cases, the heat transfer coefficients were further augmented and the thermal performance factor for the case was the highest.

  • PDF

Attenuation of Postischemic Genomic Alteration by Mesenchymal Stem Cells: a Microarray Study

  • Choi, Chunggab;Oh, Seung-Hun;Noh, Jeong-Eun;Jeong, Yong-Woo;Kim, Soonhag;Ko, Jung Jae;Kim, Ok-Joon;Song, Jihwan
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.337-344
    • /
    • 2016
  • Intravenous administration of mesenchymal stem cells (IV-MSC) protects the ischemic rat brain in a stroke model, but the molecular mechanism underlying its therapeutic effect is unclear. We compared genomic profiles using the mRNA microarray technique in a rodent stroke model. Rats were treated with $1{\times}10^6$ IV-MSC or saline (sham group) 2 h after transient middle cerebral artery occlusion (MCAo). mRNA microarray was conducted 72 h after MCAo using brain tissue from normal rats (normal group) and the sham and MSC groups. Predicted pathway analysis was performed in differentially expressed genes (DEGs), and functional tests and immunohistochemistry for inflammation-related proteins were performed. We identified 857 DEGs between the sham and normal groups, with the majority of them (88.7%) upregulated in sham group. Predicted pathway analysis revealed that cerebral ischemia activated 10 signaling pathways mainly related to inflammation and cell cycle. IV-MSC attenuated the numbers of dysregulated genes in cerebral ischemia (118 DEGs between the MSC and normal groups). In addition, a total of 218 transcripts were differentially expressed between the MSC and sham groups, and most of them (175/218 DEGs, 80.2%) were downregulated in the MSC group. IV-MSC reduced the number of Iba-$1^+$ cells in the peri-infarct area, reduced the overall infarct size, and improved functional deficits in MCAo rats. In conclusion, transcriptome analysis revealed that IV-MSC attenuated postischemic genomic alterations in the ischemic brain. Amelioration of dysregulated inflammation- and cell cycle-related gene expression in the host brain is one of the molecular mechanisms of IV-MSC therapy for cerebral ischemia.

Seismic Control of Tuned Mass Damper System with MDOF Sliding Mode Control Accounting for the Uncertainties (불확실성을 고려한 동조질량 감쇠기(TMD) 시스템의 다자유도 슬라이딩 모드 지진동 제어)

  • Lee, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.235-242
    • /
    • 2011
  • The control performance in active structural control system can be drastically deteriorated when the modeling errors and the uncertainties existing in the disturbances are disregarded in the designing stage. It can even throw the control system into an unstable phase, resulting in out of control against the seismic excitations. The purpose of the study is to investigate the control effectiveness of a non-linear control system called sliding mode controller(SMC) in cooperation with a Tuned Mass Damper subjected to the three seismic excitations selected from the FFT analysis. Even though the transient performance such as settling time and overshoot were deteriorated, the robustness against the system stability was appeared from SMC when the structural masses and stiffness perturbed within the range of ${\pm}30%$. SMC is a feasible technique for active structural control in cooperation with TMD against seismic disturbances, exhibiting robustness in perturbation of system stiffness and mass as well as uncertainties of the disturbances.

Open channel block of Kv1.4 potassium channels by aripiprazole

  • Park, Jeaneun;Cho, Kwang-Hyun;Lee, Hong Joon;Choi, Jin-Sung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.545-553
    • /
    • 2020
  • Aripiprazole is a quinolinone derivative approved as an atypical antipsychotic drug for the treatment of schizophrenia and bipolar disorder. It acts as with partial agonist activities at the dopamine D2 receptors. Although it is known to be relatively safe for patients with cardiac ailments, less is known about the effect of aripiprazole on voltage-gated ion channels such as transient A-type K+ channels, which are important for the repolarization of cardiac and neuronal action potentials. Here, we investigated the effects of aripiprazole on Kv1.4 currents expressed in HEK293 cells using a whole-cell patch-clamp technique. Aripiprazole blocked Kv1.4 channels in a concentration-dependent manner with an IC50 value of 4.4 μM and a Hill coefficient of 2.5. Aripiprazole also accelerated the activation (time-to-peak) and inactivation kinetics. Aripiprazole induced a voltage-dependent (δ = 0.17) inhibition, which was use-dependent with successive pulses on Kv1.4 currents without altering the time course of recovery from inactivation. Dehydroaripiprazole, an active metabolite of aripiprazole, inhibited Kv1.4 with an IC50 value of 6.3 μM (p < 0.05 compared with aripiprazole) with a Hill coefficient of 2.0. Furthermore, aripiprazole inhibited Kv4.3 currents to a similar extent in a concentration-dependent manner with an IC50 value of 4.9 μM and a Hill coefficient of 2.3. Thus, our results indicate that aripiprazole blocked Kv1.4 by preferentially binding to the open state of the channels.

A Clinical Study of Patent Ductus Arteriosus (동맥관 개존증의 임상적 고찰)

  • Jo, Jung-Gu;Park, Geon-Ju;Kim, Gong-Su
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.574-581
    • /
    • 1985
  • Surgical treatment for PDA has been pivotal in historical development of surgery for congenital heart disease. A clinical study on 36 cases of operated PDA were performed during period from Aug. 1981 to Jul. 1985 at the Department of Thoracic & Cardiovascular Surgery in Chonbuk University. The following results are obtained. 1. The 8 males and 28 females ranged in age from 2 yrs, to 24 yrs, [mean 11 yrs.] 2. Chief complaints of the patients were dyspnea on exertion in 61%, palpitation in 39%, frequent URI in 12%, and no subjective symptoms in 11%. 3. On auscultation, continuous machinery murmur heard in 94% and systolic in 14%. 4. Radiologic findings of chest P-A showed increased density of pulmonary vascularity in 94%, cardiomegaly in 69%, and within normal limits in 5% of the patients. 5. EKG findings of the patients revealed LVH in 69%, RVH in 6%, BVH in 6%, and within normal limits in 17%. 6. Of the 36 patients, cardiac catheterization was performed in 34 patients. The results showed mean Qp/Qs = 2.25, mean Pp/Ps=0.42, and mean systolic pulmonary arterial pressure=53mmHg. 7. Surgical methods were as followed: The 32 case of ductal ligation and one case of division & suture technique for PDA through the left posterolateral thoracotomy were done. And 2 cases of ductal ligation one suture closure through the pulmonary artery were performed under the cardiopulmonary bypass. 8. Intraoperative complication was ductal rupture with division 8< suture for PDA and transient hoarseness in 1, recanalization in 1, and urethral stricture in 1 case postoperatively. 9. One patient died due to ductal rupture intraoperatively and operative mortality was 2.8%.

  • PDF

Analysis of Hyperbolic Heat Conduction in a Thin Film (박막에서 쌍곡선형 열전도 방정식에 의한 열전도 해석)

  • 정우남;이용호;조창주
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.540-545
    • /
    • 1999
  • The classical Fourier heat conduction equation is invalid at temperatures near absolute zero or at very early times in highly transient heat transfer processes. In such situations, a hyperbolic equation model for heat conduction based on the modified Fourier law is introduced because the wave nature of heat propagation becomes dominant. The Fourier model and the hyperbolic model for heat conduction are analyzed by using the Green's function technique together with the integral transform. Analytical expressions for the heat flux and temperature distributions in a finite slab subjected to a periodic surface heating at one of its surfaces are presented and the results obtained from each model are compared with each other. The thermal wave implied b the hyperbolic model is shown to travel through a medium and to reflect back toward the origin at the other insulated surface. On the other hand, the heat by the Fourier model propagates at an infinite speed instantaneously after a thermal disturbance is felt throughout the medium.

  • PDF