• 제목/요약/키워드: Transient Liquid Phase sintering

검색결과 25건 처리시간 0.021초

상용 7xxx Series Al 합금계 혼합분말의 소결 특성 (A study on Sintering Characteristics of Commercial 7xxx Series Al Alloy Powders)

  • 공민석;배이태;민경호;;장시영;김영도
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.69-73
    • /
    • 2004
  • The sintering characteristics of commercial 7xxx series Al-Zn-Mg-Cu alloy have been investigated. Sintering system of this blended elemental powder has aspects of both transient and supersolidus liquid phase sintering. Transient liquids occur when the constitution point during sintering lies in a solid phase region but where the sintering temperature is greater than either the melting point of one of the constituent or a eutectic temperature. Supersolidus liquid phase sintering occurs when a preblended powder is heated to a temperature between the solidus and liquids. However, these reaction were restrained their inter diffusion due to the appearance of the oxide film. Thus, 7xxx series Al alloy is extremely sensitive to process variables, including particle size, holding time and sintering temperature. Therefore, above phenomenons were observed formation and behaviour of the liquid by using SEM and DSC.

7xxx계 Al 혼합분말의 승온속도에 따른 소결거동 (Sintering Behavior of 7xxx Series Al Blended Powder with Variation of Heating Rate)

  • 강신필;민경호;박현우;장시영;김영도
    • 한국분말재료학회지
    • /
    • 제12권2호
    • /
    • pp.131-135
    • /
    • 2005
  • 7xxx series Al alloy has the most attractive properties including its excellent high specific strength, stress corrosion cracking and corrosion-resistance. However, in case of the Al-Zn system, the liquid phase has a transient aspect because of the high solid solubility of Zn in Al. Therefore, transient liquid phase sintering behavior was observed during the sintering process. And the amount of liquid and its duration were influenced by the process variables including heating rate and final sintering temperature. At high heating rates($100^{\circ}C/min$), the liquid fraction increased during sintering because diffusion was minimized and therefore local saturation could easily occur. The sintered density increased with increasing heating rate.

Microstructural Behavior of Alumina Aggregate Compacts Prepared by Transient Liquid Phase Sintering

  • Lee, Seung-Jae;Kim, Hai-Doo;Lee, Deuk-Yong;Kim, Dae-Joon
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.78-82
    • /
    • 2000
  • Although alumina aggregates have been used as refractory aggregates due to the improved mechanical properties of refractories as a result of the low contraction of alumina aggregates, the aggregates have a difficulty in fabrication due to its low sinterability. Two types of alumina aggregates and a fused alumina aggregate containing transient liquid forming additives are prepared to investigate the sintering characteristics of aggregates. $Al_2O_3$rich composition in the $Al_2O_3$-MgO-$SiO_2$(-$TiO_2$) system is chosen for the transient liquid phase sintering and the final recrystallized bonding phase between grains inside the fused alumina aggregates is found to be a needle-like mullite phase. The flexural strength of alumina bars, reaction-bonded using the paste having a composition of $Al_2O_3$-MgO-$SiO_2$-$TiO_2$, is about 78 MPa, which is one half value of that of pure alumina.

  • PDF

2xxx Al 합금계 혼합분말의 소결온도에 따른 소결거동 (Sintering Behavior of 2xxx Series Al alloys with Variation of Sintering Temperature)

  • 민경호;김대건;장시영;임태환;김영도
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.40-45
    • /
    • 2003
  • Sintering behavior of 2xxx series Al alloy was investigated to obtain full densification and sound microstructure. The commercial 2xxx series Al alloy powder. AMB2712, was used as a starting powder. The mixing powder was characterized by using particle size analyzer, SEM and XRD. The optimum compacting pressure was 200 MPa, which was the starting point of the "homogeneous deformation" stage. The powder compacts were sintered at $550~630^{\circ}C$ after burn-off process at $400^{\circ}C$. Swelling phenomenon caused by transient liquid phase sintering was observed below $590^{\circ}C$ of sintering temperature. At $610^{\circ}C$, sintering density was increased by effect of remained liquid phase. Further densification was not observed above $610^{\circ}C$. Therefore, it was determined that the optimum sintering temperature of AMB2712 powder was $610^{\circ}C$.}C$.

Effect of Carbon Addition and Sintering Temperature on Densification and Microstructural Evolution of Sinter-Hardening Alloys Steels

  • Verma, N.;Anand, S.;Upadhyaya, A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.557-558
    • /
    • 2006
  • In all conventional sintered PM products, the pores present are of two types, primary and secondary. Primary pores forming during compaction and latter during sintering, due to penetration of formed liquid through the matrix grain boundary. Effect of carbon addition on diffusion of Cu in SH737-2Cu system was investigated. After compaction and transient liquid phase sintering at $1120^{\circ}C$ and $1180^{\circ}C$, samples were characterized for densification, showing rise in sintering density and reduction in swelling on carbon addition. Quantitative microstructural characterization (shape factor and pore size) revealed bimodal distribution for 0% carbon, more rounded pores for 0.9% carbon and higher sintering temperature, and pore coarsening at higher sintering temperature.

  • PDF

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

액상천이공정에 의한 PZTN의 저온소결에 관한 연구 (Low Temperature Sintering of PZTN by the Liquid Phase Transient Processing)

  • 김찬영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권12호
    • /
    • pp.593-598
    • /
    • 2001
  • Transient liquid phase processing was investigated to decrease processing temperatures while maintaining useful piezoelectric properties in the lead zirconate titanate (PZT) system. Niobium oxide$(Nb_2O_5)$ modified crystalline PZT (PZTN) powder was combined with lead silicate $(PS; PbO-SiO_2)$ glass powder and crystalline titania, zirconia, and niobia. Firing above the melting temperature of the lead silicate $(PS; Tm \risingdotseq\; 714^{\circk}C)$ resulted in liquid phase densification of the PZTN followed by dissolution of the titania, zirconia, and niobia into the liquid phase, and crystallization of additional PZTN. The addition of crystalline titania, zirconia, and niobia to react with the lead oxide from the lead silicate phase resulted in an increase in the dielectric and Piezoelectric properties.

  • PDF

Investigation on the Sintering Behavior of P/M Al-Zn-Mg-Cu Alloy

  • Shahmohammadi, M.;Simchi, A.;Danninger, H.;Arvand, A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.536-537
    • /
    • 2006
  • In the present work, the sintering behavior of high strength Al-5.6Zn-2.5Mg-1.6Cu (in wt.%) alloy compacts prepared from elemental powders was investigated. Microstructural evaluation was accompanied by XRD and DSC methods in order to determine the temperature and chemical composition of the liquid phases formed during sintering. It was found that three transient liquid phases are formed at 420, 439 and 450 $^{\circ}C$. Microstructural study revealed the progressive formation of sintered contacts due to the presence of the liquid phases, although the green compact expands as a result of the melt penetration along the grain boundaries. While Zn melts at ${\sim}420\;^{\circ}C$, the intermetallic phases formed between Al and Mg were found to be responsible for the formation of liquid phase and the dimensional change at higher temperatures.

  • PDF

CaCrO4 첨가에 따른 LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ)의 전이액상소결거동 (Transient Liquid Phase Sintering of LCCC(La0.8Ca0.2Cr0.9Co0.1O3-δ) with the Addition of CaCrO4)

  • 이호창;강보경;이준형;허영우;김재육;김정주
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.197-203
    • /
    • 2012
  • In this study, in order to improve densification of $La_{0.8}Ca_{0.2}Cr_{0.9}Co_{0.1}O_{3-\delta}$ (LCCC), which is known for one of the most proper candidate interconnector materials in the solid oxide fuel cells, $CaCrO_4$ was prepared via solid oxide synthesis route and added to the LCCC with different amount and particle sizes. As the amount of the $CaCrO_4$ increased, porosity of the sintered samples increased, and the pore size was proportional to the particle size of the $CaCrO_4$. This supports the fact that the $CaCrO_4$ phase forms liquid during sintering and permeate into the matrix leaving behind large pores. Then the liquid reacts with the matrix through the solid solution. However, when the samples were sintered with a slow ramp up rates, the porosity decreased. This is thought to be caused by the progressive solid solution of $CaCrO_4$ before the temperature reach to the melting temperature and forms a fluent amount of liquids. The sintering behavior of the LCCC with the addition of $CaCrO_4$ was analyzed through the transient liquid phase sintering on the basis of the microstructure observation and phase identification by x-ray diffraction.