• Title/Summary/Keyword: Transient Liquid Crystal Method

Search Result 35, Processing Time 0.025 seconds

A Study on Heat Transfer According to Inclined Angle and Surface Performance Using Turbulent Impingement Jet with a Liquid Crystal Transient Method (형상 및 경사 각도에 따른 난류 충돌 제트에 의한 과도 액정 기법을 이용한 열전달 특성에 대한 연구)

  • Lim, Kyoung-Bin;Lee, Chang-Hee;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1164-1172
    • /
    • 2006
  • Measurements of the local heat transfer coefficients on hemispherical convex and concave surfaces with a turbulent impinging jet were made. The Reynolds number used was 11000, 23000, 50000 and the nozzle- to- surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was a = $0^{\circ}$, $15^{\circ}$, $30^{\circ}$ and $40^{\circ}$. In case of concave surface, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit secondary maxima at $0^{\circ}$ $\leq$ a $\leq$ $15^{\circ}$, L/d $\leq$ 4 for X/d<0(upstream) and at $0^{\circ}$ $\leq$ a $\leq$ $40^{\circ}$, L/d $\leq$ 4 and at $30^{\circ}$ $\leq$ a $\leq$ $40^{\circ}$, 4 < L/d $\leq$ 6 for X/d<0(downstream). The secondary maximum occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. In case of convex, correlations of the stagnation point Nusselt number according to Reynolds number, jet-to-surface distance ratio and dimensionless surface angle are presented. In the stagnation point, in term of Ren, n ranges from 0.43 in case of 2 $\leq$ L/d $\leq$ 6 to 0.45 in case of 6 < L/d $\leq$ 10, there agrees roughly appears to be laminar boundary layer result. The maximum Nusselt number, in this experiment, occurred in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. On this condition about surface curvature D/d=10, the maximum displacement is about 0.7 times of the jet nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

Influence of transient surface hydrogen on Aluminum catalyzed Silicon nanowire growth

  • Sin, Nae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.125.2-125.2
    • /
    • 2016
  • Semiconductor nanowires are essential building blocks for various nanotechnologies including energy conversion, optoelectronics, and thermoelectric devices. Bottom-up synthetic approach utilizing metal catalyst and vapor phase precursor molecules (i.e., vapor - liquid - solid (VLS) method) is widely employed to grow semiconductor nanowires. Al has received attention as growth catalyst since it is free from contamination issue of Si nanowire leading to the deterioration of electrical properties. Al-catalyzed Si nanowire growth, however, unlike Au-Si system, has relatively narrow window for stable growth, showing highly tapered sidewall structure at high temperature condition. Although surface chemistry is generally known for its role on the crystal growth, it is still unclear how surface adsorbates such as hydrogen atoms and the nanowire sidewall morphology interrelate in VLS growth. Here, we use real-time in situ infrared spectroscopy to confirm the presence of surface hydrogen atoms chemisorbed on Si nanowire sidewalls grown from Al catalyst and demonstrate they are necessary to prevent unwanted tapering of nanowire. We analyze the surface coverage of hydrogen atoms quantitatively via comparison of Si-H vibration modes measured during growth with those obtained from postgrowth measurement. Our findings suggest that the surface adsorbed hydrogen plays a critical role in preventing nanowire sidewall tapering and provide new insights for the role of surface chemistry in VLS growth.

  • PDF

Study on The Shock Damage Evaluation of TFT-LCD module for Mobile IT Devices (휴대용 IT 기기의 디스플레이 내충격 설계를 위한 손상평가 연구)

  • Kim B.S.;Lee D.J.;Koo J.C.;Choi J.B.;Kim Y.J.;Chu Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.489-493
    • /
    • 2005
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact testredesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

  • PDF

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF