• Title/Summary/Keyword: Transient Flow

Search Result 1,136, Processing Time 0.023 seconds

Dynamic Performance Comparison of Various Combination of Reactive Power Compensators (조상설비 조합에 따른 정태적 특성 및 동태적 특성 비교)

  • Jang Gilsoo;Lee Byongjun;Kwon Sae-hyuk;Kang Sanggyun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.4
    • /
    • pp.159-164
    • /
    • 2005
  • Various compensators are installed into the power system to operate the system economically and stably by maximizing the availability of utilities and power transmission capability. Fixed Capacitor(FC), Mechanical Switched Capacitor(MSC), and FACTS(Flexible AC Transmission Systems) are used to regulate voltage and power flow of the system. When a disturbance occurs in the power system, the Fixed Capacitor operates dependently on the voltage of the power system and cannot change the amount of installation automatically. But compared to other equipment, the Fixed Capacitor is more economical due to its low cost. Since MSC can change the amount of installation according to the state of the power system, operates more effectively than the Fixed Capacitor. FACTS have fast dynamic performance for the transient condition, but the cost is high. Therefore, it is needed to develop an optimized installation planning for the reactive power compensators by considering their dynamic performance and cost. In this paper, an optimized compensator combination and the proposed scheme is proposed and it is applied to KEPCO system in order to show its capabilities.

A Study of the Characteristics on the Vacuum Interrupter with Axial Magnetic Field Type using 3 Dimension Finite Element Analysis (3차원 유한요소해석을 이용한 종자게형 진공 인터럽터의 특성고찰)

  • 하덕용;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.460-467
    • /
    • 2002
  • This paper deals with the distribution characteristics of the current density and axial magnetic flux density on the vacuum interrupter with axial magnetic field type using 3 dimension finite element analysis. An axial magnetic field parallel to the current flow in the arc column can improve the current breaking capacity of vacuum interrupter by affecting the arc mode. The axial magnetic flux density on the contact electrode surface is analyzed by inputting external current as a function of the transient time for sine half wave. And it also is analyzed within the gap distance of the contact electrode. The peak value of current but is decreased with the descending current on the contact electrode surface and within the gap distance of the contact electrode. The residual magnetic field is generated on the contact electrode surface and within the gap distance in the instant of zero current, which is due to the influence of eddy currents. The phase shift due to eddy currents, defined as time difference between the maximum value of current and axial magnetic field, is about 1ms in the center point of gap distance.

Diagnosis Technique of Surface Aging according to Various Environment Condition for Silicon Polymer Insulator (여러환경조건에 의한 Silicon애자의 표면열화 진단기술)

  • Park, Jae-Jun;Jung, Myeong-Yeon;Lee, Seung-Wook;Kim, Jeong-Boo;Song, Young-Chul;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.76-81
    • /
    • 2004
  • This paper presents the results of spectral analysis of leakage current waveforms on contaminated insulators under various fog and environment conditions(salt fog, clean fog, rain) The larger the leakage current during 200ms, the higer the power spectrum at 60Hz. For almost equal maximum current during 200ms, however, the spectrum at 60hz and the odd order harmonics increase emphatically when discharges occur continuously for several half-waves. If contaminated insulators suffers from high salt-density fog, the leakage current occurs with high crest value intermittently, results in the low spectrum. Analysis of leakage current data showed that this electrical activity was characterized by transient arcing behavior contaminants are deposited on the insulator surface during salt fog tests. This provides a path for the leakage current to flow along the surface of the insulator. It is important to have an indication of the pollution accumulation in order to evulate the test performance of a particular insulator. If the drop in surface resistivity is severe enough, then the leakage current may escalate into s service interrupting flashover that degrade power quality.

  • PDF

A Study on Interaction of Estuarial Water and Sediment Transport (하구수와 표사의 상호작용에 관한 연구)

  • Lee, H.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

Estimation of Thermal Conductivity and Diffusivity by an Inverse Analysis (역해석에 의한 열전도율 및 확산율 예측)

  • Na, Jae-Jeong;Lee, Jung-Min;Kang, Kyung-Taik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.397-402
    • /
    • 2012
  • The objective of this study is the estimation of the two unknown thermal conductivity and thermal diffusivity by an inverse heat conduction analysis using the Levenberg-Marguardt method. One dimensional formulation of heat conduction problem in the model was applied. Two point transient temperature of test pieces and heat flux of inflow were measured under the high enthalpy flow environment. Estimated thermal conductivity and thermal diffusivity by an inverse analysis were compared with the known values of graphite test piece. It showed the effectiveness of proposed experimental inverse analysis.

  • PDF

Evaluation of Indoor Thermal Comfort for Ceiling Type System Air-Conditioner with Various Discharge Angles (천장형 시스템 에어컨의 토출방향 변화에 따른 실내 열쾌적성 평가)

  • Lee, Jin-Hyung;Kim, You-Jae;Choi, Weon-Seok;Park, Sung-Kwan;Youn, Baek;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1180-1185
    • /
    • 2006
  • Modern people spend most of time at indoor space, such as office or classroom. Especially, occupants are exposed to the airtight indoor air quality (IAQ) for a long time, At present, many studies on the air-conditioning systems are more focused on the individual thermal comfort than the thermal efficiency due to increase of the concern of health. There are several factors which are influenced thermal comfort, such as temperature, humidity, convection and air movement, etc. Also, the individual factor, such as age, gender, Physical constitution and habit, should be considered. The 4-way cassette type air conditioner is known to bring out better performance about thermal comfort than the traditional one. This study is performed on the higher ceiling environment than the common buildings or classrooms. Also, this study analyzed on the Indoor thermal comfort by diffusing direction of 4-way cassette air conditioner with various discharge angles, $45^{\circ},\;50^{\circ},\;55^{\circ}$ and $60^{\circ}$. Using a commercial code, FLUENT, three-dimensional transient air thermal flow fields are calculated with appropriate wall boundary conditions and standard $k-{\epsilon}$ turbulence model. Results of velocity and temperature distributions are graphically depicted with various discharge angles.

  • PDF

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

A Debris Bed Model with Gab Inflow and Gas Upflow for Debris/Water/Concrete Interaction and Its Application under Severe Accident Condition in LWR. (개스 Inflow와 Upflow를 갖는 Debris/water/concrete상호작용 해석용 Debris Bed 모델 및 중대사고 조건에 그 적용해석)

  • Jong In Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 1985
  • A model for thermal interactions of debris/water with gas flow from within and below debris bed was presented for severe accident analysis in LWR. The consumption of steam, production of hydrogen in the debris bed, generation of gases from below debris bed and generation of chemical heat are included in the conservation equations. The model has been incorporated in the MARCH code to estimate the gas production due to both metal/oxidation and hot debris/concrete interaction. The results indicate that the hydrogen source can potentially give a significant impact on the containment pressure transient and the conductive heat loss to concrete and the convective gas cooling in the debris bed have a small effect on the debris bed coolability. However, the reheating and melting of the debris particles could be delayed by the interaction of debris with concrete.

  • PDF

SAMPLING BASED UNCERTAINTY ANALYSIS OF 10 % HOT LEG BREAK LOCA IN LARGE SCALE TEST FACILITY

  • Sengupta, Samiran;Dubey, S.K.;Rao, R.S.;Gupta, S.K.;Raina, V.K
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.690-703
    • /
    • 2010
  • Sampling based uncertainty analysis was carried out to quantify uncertainty in predictions of best estimate code RELAP5/MOD3.2 for a thermal hydraulic test (10% hot leg break LOCA) performed in the Large Scale Test Facility (LSTF) as a part of an IAEA coordinated research project. The nodalisation of the test facility was qualified for both steady state and transient level by systematically applying the procedures led by uncertainty methodology based on accuracy extrapolation (UMAE); uncertainty analysis was carried out using the Latin hypercube sampling (LHS) method to evaluate uncertainty for ten input parameters. Sixteen output parameters were selected for uncertainty evaluation and uncertainty band between $5^{th}$ and $95^{th}$ percentile of the output parameters were evaluated. It was observed that the uncertainty band for the primary pressure during two phase blowdown is larger than that of the remaining period. Similarly, a larger uncertainty band is observed relating to accumulator injection flow during reflood phase. Importance analysis was also carried out and standard rank regression coefficients were computed to quantify the effect of each individual input parameter on output parameters. It was observed that the break discharge coefficient is the most important uncertain parameter relating to the prediction of all the primary side parameters and that the steam generator (SG) relief pressure setting is the most important parameter in predicting the SG secondary pressure.

Research on the structure design of the LBE reactor coolant pump in the lead base heap

  • Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Wang, Xiuli;An, Ce;Chen, Jing
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.546-555
    • /
    • 2019
  • Since the first nuclear reactor first critical, nuclear systems has gone through four generations of history, and the fourth generation nuclear system will be truly realized in the near future. The notions of SVBR and lead-bismuth eutectic alloy coolant put forward by Russia were well received by the international nuclear science community. Lead-bismuth eutectic alloy with the ability of the better neutron economy, the low melting point, the high boiling point, the chemical inertness to water and air and other features, which was considered the most promising coolant for the 4th generation nuclear reactors. This study mainly focuses on the structural design optimization of the 4th-generation reactor coolant pump, including analysis of external characteristics, inner flow, and transient characteristic. It was found that: the reactor coolant pump with a central symmetrical dual-outlet volute structure has better radial-direction balance, the pump without guide vane has better hydraulic performance, and the pump with guide vanes has worse torsional vibration and pressure pulsation. This study serves as experience accumulation and technical support for the development of the 4th generation nuclear energy system.