• Title/Summary/Keyword: Transient Components

Search Result 337, Processing Time 0.031 seconds

The Electrical and Transient Thermal characteristics of TVS diode for Surge Absorber (TVS 다이오드의 전기적 특성 및 과도 열방출 특성 해석)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.208-212
    • /
    • 2003
  • Silicon transient voltage suppressors (TVSs) are clamping devices that limit voltage spikes by low impedance avalanche breakdown of a rugged silicon PN junction. They are used to protect sensitive components from electrical overstress such as that caused by induces lightning, inductive load switching and electrostatic discharge. In this paper, we present static and dynamic characteristics of TVS diode using thermal analysis simulation software. And also, it is presented that the thermal dissipation characteristics of TVS diode in the transient state.

  • PDF

Application to the Electro-Optical Conversion Device of OLEDs (도프형 유기 EL 소자의 전기-광 변환소자 응용)

  • Kim, Ju-Seung;Min, Yong-Gi;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.114-118
    • /
    • 2006
  • We investigated the transient electroluminescence (EL) and modulation characteristics of red organic light-emitting diodes (OLEDs), which consist with 4-(dicyanomethylene)-2-i -propyl-6-(1,1,7,7-tetramethyljulolidyl-9-cnyl)-4H-pyran (DCJTI) and rubrene doped into tris(8-hydroxyquinoline)aluminum ($Alq_3$). The transient EL waveforms showed two components, the overshooting peak and constant component, indicating that the excess amount of accumulated charges simultaneously recombine at the onset moment. This overshooting effect reduced the rise time of transient EL and enhanced the optical output of OLEDs when the pulse voltage applied to the device. We demonstrated that the red OLEDs could be use for the high-speed switching application by driving at more than 100 MHz and transmitting the video signals utilized as the electro-optical conversion device

  • PDF

Computing and Reducing Transient Error Propagation in Registers

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2011
  • Recent research indicates that transient errors will increasingly become a critical concern in microprocessor design. As embedded processors are widely used in reliability-critical or noisy environments, it is necessary to develop cost-effective fault-tolerant techniques to protect processors against transient errors. The register file is one of the critical components that can significantly affect microprocessor system reliability, since registers are typically accessed very frequently, and transient errors in registers can be easily propagated to functional units or the memory system, leading to silent data error (SDC) or system crash. This paper focuses on investigating the impact of register file soft errors on system reliability and developing cost-effective techniques to improve the register file immunity to soft errors. This paper proposes the register vulnerability factor (RVF) concept to characterize the probability that register transient errors can escape the register file and thus potentially affect system reliability. We propose an approach to compute the RVF based on register access patterns. In this paper, we also propose two compiler-directed techniques and a hybrid approach to improve register file reliability cost-effectively by lowering the RVF value. Our experiments indicate that on average, RVF can be reduced to 9.1% and 9.5% by the hyperblock-based instruction re-scheduling and the reliability-oriented register assignment respectively, which can potentially lower the reliability cost significantly, without sacrificing the register value integrity.

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.

Redesigning Taguchi Sensor

  • Hossein-Babaei Faramarz;Park, Won-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • The configuration of the main components and the physical structure of the Taguchi sensor, the first ceramic gas sensor mass produced, has remained virtually unaltered since its appearance 40 years ago. This device owns an excellent combination of the quality factors but is non-selective. The research efforts carried out to enhance the selectivity in this resistive gas sensor are briefly reviewed. A novel design, Capillary-attached Gas Sensor (CGS), is introduced, which employs the same ceramic components used for the fabrication of a classical Taguchi sensor but in altered geometries. CGS presents remarkable advantages from the view point of selectivity over the original design. While the steady state response of a CGS has the same significance as that of the Taguchi sensor, its transient response presents valuable diagnostic information. Fabrication and test of a prototype CGS is reported.

Development of a Portable Electronic Nose System (I) - System Development - (휴대용 전자코 시스템 개발 (I) - 시스템 개발 -)

  • Lee, Jeong-Woo;Kim, Seong-Min
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2008
  • The purpose of this study was to develop a portable electronic nose system to measure volatile components of agricultural and food products. Also, a graphical operating software to control the electronic nose system and to acquire signals through the Internet was developed. An array of five commercial metal oxide gas sensors was used to detect various volatile gas components of target samples. Transient and steady state signals were analyzed to extract variables related to sample states, To find optimal operating conditions of the system, several experiments were performed with different gas chambers, vacuum pumps, gas sampling temperatures, and sample container sizes. The patterns of gas sensor signals were analysed to find effects of the various conditions.

Asymmetry Components Reduction using Superconducting Fault Current Limiter Operation in Transient Period (비대칭 고장전류 저감을 위한 초전도 한류기 동작 분석)

  • Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Kyu-Ho;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.381-382
    • /
    • 2008
  • This paper presents a novel scheme for reducing an asymmetry current with SFCL (Superconducting Fault Current Limiter) operation during transient period, when a fault occurs in power systems. The main idea is installation an auxiliary SFCL with characteristics, which reduces the asymmetry fault current in first half cycle before the operating of main SFCL. For proper activities of SFCLs, the principle of asymmetry current nature is reviewed. A scheme of asymmetry components reduction with SFCL is then explained. The EMTP/ATPDraw model of SFCLs using MODELS language developed and simulated to verify the performance and effectiveness.

  • PDF

Current Reference Calculation for Distribution Static Compensator using Phase Shift (위상변이를 이용한 배전용 정지형 보상기의 전류 지령 계산)

  • Hong, Sung-Min;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • This paper proposes a calculation of compensation current using phase shift to eliminate ripple components of instantaneous active power under unbalanced or non-linear loads condition. The proposed phase shift method instead of existing method(LPF; Low Pass Filter) to remove ripple components and this proposed method improves performances of transient and steady state response. To compare proposed method with existing method, experiments have been done for calculating an average active power at load side. Their results show that transient response and steady state response of proposed method is improved.

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.