• Title/Summary/Keyword: Transgenic tobacco plants

Search Result 193, Processing Time 0.033 seconds

Effect of Aminoglycoside Antibiotics on in-Vitro Morphogenesis from Cultured Cells of Chrysanthemum and Tobacco

  • Teixeira da Silva, Jaime A.;Fukai, Seiichi
    • Journal of Plant Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.25-37
    • /
    • 2004
  • Successful genetic transformation of plants requires non-chimeric selection of transformed tissues and their subsequent regeneration. With rare exceptions, most transformation protocols still rely heavily on antibiotics for selecting transgenic cells that contain an antibiotic-degrading selectable marker gene. Here, the morphogenic capacity of in-vitro explants of chrysanthemnum and tobacco stems and leaves (control and transgenic) changed with the addition of aminoglycoside antibiotics (AAs), In a test of 6 AAs, phytotoxicity occurred at concentrations of 10 to 25 and 50 to 100$\mu\textrm{g}$ $mL^{-1}$ in chrysanthemum and tobacco explants, respectively. Light conditions as well as explant source and size also had significant effects. The use of transverse thin cell layers (tTCLs), in conjunction with high initial AA selection levels, supported the greatest regeneration of transgenic material (adventitious shoots or callus) and the lowest number of escapes. Flow-cytometric analyses revealed no endodu-plication in chrysanthemum, even at high AA levels. However, this phenomenon was observed in tobacco calli(8C or more), even at low AA concentrations (i.e., 5 to 10 $\mu\textrm{g}$ mL$^{-1}$ ).

Research on Tobacco Plant Diseases in Korea : An Overview (우리 나라 담배 병 연구의 어제와 오늘)

  • Kim, Jung-Hwa
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.78-83
    • /
    • 2002
  • Tobacco diseases have not been recorded until 1900s in Korea, where tobacco plants were introduced at early 1700s. Practical researches on the disease have been conducted since mid 1960s. Major ten tobacco diseases were mosaic caused by tobacco mosaic virus·potato virus Y·cucumber mosaic virus, bacterial wilt, hollow stalk, wild fire caused by angular leaf spot strain, black shank, brown spot, powdery mildew and fusarium wilt. But their annual occurrences were varied according to changes of tobacco varieties and their cultivating practices. As no useful chemicals, several biological tactics have been developed to control the viral or bacterial diseases that give significant economic damages on sustainable crop yield, but not practicable to field farming condition yet. Transgenic tobacco plants containing foreign disease resistant genes have been developed by current bio-technology, but not released to farmers yet. Though some disease-resistant tobacco varieties have been developed by the conventional breeding technology and currently used by farmers, their disease controlling efficacy have been diminished by occurrence of the new strain or race. Future research on tobacco diseases has been focused on technical development to produce high quality tobacco with less production cost, which leads Korean tobacco industry to keep its competence against foreign industry and decreasing overall market.

Overexpression of Rice Chloroplast Small Heat Shock Protein Increases Thermotolerance in Transgenic Plants (벼 엽록체 small HSP의 과발현에 의한 형질전환 식물체의 내열성 증가)

  • 원성혜;조진기;이병헌
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2003
  • To investigate the function of chloroplast small heat shock protein (HSP), transgenic tobacco plants (Nicotiana tabacum L, cv. SR-1) that constitutively overexpress the rice chloroplast small HSP (Oshsp26) were generated. Effects of constitutive expression of the Oshsp26 on thermotolerance were investigated with the chlorophyll fluorescence. After 5-min incubation of leaf discs at high temperatures, an increase in the Fo level, indication of separation of LHCII from PSII, was mitigated by constitutive expression of the chloroplast small HSP When tobacco plantlets grown in Petri dishes were incubated at $20^{\circ}C$/TEX> for 45 min and subsequently incubated at $20^{\circ}C$/TEX> leaf color of wild-type plant became gradually white and all plantlets were finally died. Under the conditions in which all the wild-type plants died, more than 80% of the transformants remained green and survived. It was also found that the levels of Oshsp26 protein accumulated in transgenic plants were correlated with the degree of thermotolerance. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery, as a results, increases thermotolerance of whole plant during heat stress.

Systemic Resistance and Expression of the Pathogenesis-Related Genes Mediated by the Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens EXTN-1 Against Anthracnose Disease in Cucumber

  • Park, Kyung-Seok;Ahn, Il-Pyung;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. To obtain plant growth-promoting rhizobacteria inducing resistance against cucumber anthracnose by Colletotrichum orbiculare, more than 800 strains of rhizobacteria were screened in the greenhouse. Among these strains, Bacillus amyloliquefaciens solate EXTN-1 showed significant disease control efficacy on the plants. Induction of pathogenesis-related(PR-la) gene expression by EXTN-1 was assessed using tobacco plants transformed with PR-1a::$\beta$-glucuronidase(GUS) construct. GUS activities of tobacco treated with EXTN-1 and salicylic acid-treated transgenic tobacco were significantly higher than those of tobacco plants with other treatments. Gene expression analyses indicated that EXTN-1 induces the accumulation of defense-related genes of tobacco. The results showed that some defense genes are expressed by the treatment with EXTN-1 suggesting the similar resistance mechanism by salicylic acid.

  • PDF

Transformation of Brassica napus with Acid Phosphatase Gene (Acid Phosphatase 유전자 도입에 의한 유채의 형질 전환)

  • Lee, Hyo-Shin;Son, Dae-Young;Jo, Jin-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.285-292
    • /
    • 1997
  • This study was conducted to obtain the transgenic Brnssica napus plants with tobacco Apase gene using the binary vector system of Agrobacteriurn fumefociens. The results obtained were summarized as follows: A repressible acid phosphatase gene of Saccharon~yces cerevisiae, pho105 was used for screening of tobacco Apase cDNA. In order to identify Apase gene in tobacco genome, Southern blot analysis was pcrformed and the Apase gcnc may be present as a single copy, or at most two or three copies, in tobacco genome. To isolate the tobacco Apase gene, tobacco cDNA library was constructed using purifed mRNA from -Pi treated tobacco root and the plaque forming unit of the library was 2.8 x $10^5$ pfu/m${\ell}$, therefore the library might cover all expressed mRNAs. Using pho5 as a probe. tobacco Apase cDNA was cloned, and restriction mapping and Southern blot analysis of cDNA insert were revealed that the 3.6 kb cDNA contained tobacco acid phosphatase cDNA. Plasmid pGA695 -tcAPl was constructed by subcloning tobacco Apase cDNA into the Hind site of pGA695 with 35s promoter which can be expressed constitutively in plants. The Brassica napus cotyledonary petioles were cocultivated with the ,4 grobacteriunz and transferred to the selection medium. The transformed and regenerated plants were transplanted to soil medium. Southern blot analysis was done on the transformed plants, and it was confirmed that a foregin gene was stably integrated into the genonies of B. nnpus plants.

  • PDF

Photosynthetic Characterization of Transgenic Tobacco Plant, by Transformation of Chlorophyll a/b Binding Protein Gene of Korean Ginseng (인삼의 Chlorophyll a/b Binding Protein유전자를 도입한 연초의 광합성 특성)

  • 이기원;채순용;김갑식;박성원;황혜연;이영복
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.23 no.2
    • /
    • pp.109-114
    • /
    • 2001
  • A CAB cDNA vector(pKGCAB), encoding the light harvesting chlorophyll a/b binding protein in Korean ginseng (Panax ginseng C. A. Meyer), was constructed with the CaMV35S promoter of plant expression vector. The chimeric vector was transformed into tobacco(Nicotiana tabacum cv. NC 82) using Agrobacterium tumefaciens LBA 4404 strain, and the transgenic tobacco plant CAB-TP2 was selected. Photosynthetic rates of the CAB-TP2 plant at before-flowering stage were increased about 20% under low irradiance conditions of quantum 100 and 500 $\mu$mol.m$^{-2}$ s$^{-1}$ , however, the rates were similar to those of NC 82 under quantum 1000 and 2000 $\mu$mol.m$^{-2}$ s$^{-1}$ conditions. The plants were germinating under low- or normal irradiance condition and the quantum yield of photosystem III were measured. The differences of the Fv/Em values between conditions were 0.07 and 0.01 in NC 82 and CAB-TP2, respectively. The mature leaves in the position 8-10 of the CAB-TP2 at before-flowering stage revealed l0% higher Fv/Fm values in range of 0.759 to 0.781 and 40% more chlorophyll contents of 70-93mg/$m\ell$ than those of normal NC 82. These data suggest the possibility that the increase in photosynthetic activity of leaves under low light intensity in the canopy of CAB-TP2 transgenic tobacco might lead to increase the quality of lower tobacco leaves.

  • PDF