• Title/Summary/Keyword: Transgenic line

Search Result 198, Processing Time 0.023 seconds

Identification of Enhanced Resistance to Abiotic Stress Induced by Methyl Viologen in Progeny from a Cross of Transgenic Lines of Petunia

  • Lee, Su Young;Lee, Jung Lim;Kim, Seung Tae;Lee, Eun Kyung;Kwon, O Hyeon;Kim, Won Hee
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.4
    • /
    • pp.269-273
    • /
    • 2011
  • This study was conducted to investigate the resistance to abiotic stress in the progeny obtained by a cross between NDPK2-transgenic line (NDPK2-7-1) and MnSOD (SOD2) transgenic line (SOD2-2-1-1-35) to develop transgenic petunia highly resistant to environmental stress. At the treatment of 100 and $200{\mu}M$ methyl viologene (MV), the progeny was significantly less damaged than its parental plants (SOD2- or NDPK2-transgenic lines) as well as non-transgenic plants, implying its resistance to oxidative stress enhanced than SOD2- or NDPK2-transgenic plants. In an expression of 11 quantitative traits, the progeny remained similar to control plants, although it infrequently displayed slightly longer or wider than non-transgenic control plants. In the color and shape of flowers, there was no significant difference between the progeny and its parents or non-transgenic control.

Characterization of Brain Tumor Cell using Vasopressin-SV40 T Ag Transgenic Mouse

  • Kim, Sung-Hyun;Lee, Eun-Ju;Kim, Myoung-Ok;Park, Jun-Hong;Kyoungin-Cho;Jung, Boo-Kyung;Kim, Hee-Chul;Hwang, Sol-Ha;Lee, Hoon-Taek
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.44-44
    • /
    • 2003
  • In previous reports, pVPSV.IGR2.1 transgenic mouse were described that brain tumor and lymphoma by reason of Vasopressin-SV40 T antigen. In this study, we produced pVPSV.IGR3.6 transgenic mouse that used pVPSV.IGR3.6 vector. Expression of transgene was vary different in transgenic mouse. We obtained 6 transgenic mouse line, moreover they had died at the age of 2~6 weeks without transmitting the transgene to their offspring, and had tumorigenesis on same location with pVPSV.IGR2.1 transgenic mouse. Only a founder mouse was investigated for expression of fusion gene. Here we extended this transgenic approach to the study of tumor progression. From the mouse, we confirmed brain tumor cell, after then cultured for investigate characterization. In this report, we demonstrate that reduction of survival rate in transgenic mouse fused vasopressin gene length, acquisition of brain tumor cell, composition with astrocyte cells and neuronal cells. Finally, cells had no change with increase of passage.

  • PDF

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.

Studies on nickel uptake in transgenic Arabidopsis thaliana introduced with TgMTP1 gene encoding metal tolerance protein (TgMTP1 과발현 애기장대에서 Nickel 흡수 연구)

  • Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.409-413
    • /
    • 2015
  • To enhance phytoremediation, which removes heavy metal from soil, transgenic plants were applied to contaminated soil. We constructed a transformation vector expressing both $TgMTP_1$ (T. goesingense metal tolerance protein):HA and TgMTP:GFP genes. Transgenic plants were generated using an Agrobacterium-mediated transformation system that expressed the two vectors. Screening and analysis confirmed the incorporation of foreign genes into the Arabidopsis thaliana genome. Callus was induced in the 116 T3 line. These transgenic plants and calli were used for further analyses on the accumulation of Ni. The 116 T3-line plants and calli from selected lines were resistant to heavy metals and accumulated Ni in their leaves. The expression level of TgMTP RNA was equal in all leaves, but protein stability increased in the leaves with Ni treatment. According to these results, we suggest that $TgMTP_1$-overexpressing plants may be useful for phytoremediation of soil.

Resistance to the Fungal Pathogen Phytophthora infestans of Transgenic Potato Plants Harboring of Chitinase Gene (Chitinase 유전자 도입 형질전환 감자식물체의 역병저항성)

  • Choi, Kyung-Hwa;Yang, Duk-Chun;Kim, Hyun-Soon;Choi, Kyung-Ja;Cho, Kwang-Yeon;Jung, Hyuk
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.177-182
    • /
    • 1999
  • A fungal infection assay between normal and transgenic potato harboring chitinase gene in cultivar Belchip was investigated. In the first stage of experiment, seven transgenic lines having 12cm tall were tested for their resistance against potato late blight pathogen Phytophthora infestans by infection with the zoospores, artificially, Susceptibility to potato late blight infection could be classified into three types based on the rate. In terms of resistance to the disease, two lines were higher, two lines were more suppressive, and three lines were similar as compared with the control. In the following experiment, only 2 risistant lines and 1 suppressed line were used to confirm the resistance again. The results of both experiments were similar. Furthermore, two highly resistant transgenic lines grown in field exhibited a higher resistance than control under the conditions of natural ocurrence of the fungal disease.

  • PDF

Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar (형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성)

  • Chun, Young Woo;Klopfenstein, Ned B.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.77-86
    • /
    • 1995
  • To effectively modify tree function with genetic engineering, transgenes must be expressed at the proper level in the appropriate tissues at suitable developmental stages. Toward understanding the spatial and temporal expression of transgenes in woody plants, transgene expression was evaluated in three greenhouse-grown, transgenic lines of Populus alba ${\times}$ P. grandidentata hybrid clone 'Hansen'. All transgenic poplar lines possess constructs containing the bacterial nopaline synthase(nos) promoter linked to a neomycin phosphotransferase II(NPT II) selectable marker gene. In addition, each transgenic poplar line contains one of the following gene constructs : 1) a wound-inducible potato proteinase inhibitor II (pin2) promoter linked to a chloramphenicol acetyltransferase(CAT) reporter gene. 2) a nos promoter linked to a PIN2 structural gene : or 3) a Cauliflower Mosaic Virus 35s promoter linked to a PIN2 structural gene. Polymerase chain reaction(PCR) was used to verify the presence of foreign genes in the poplar genome. Enzyme-linked immunosorbent assays(ELISAs) were used to evaluate organ specific expression of the nos-NPT II construct. NPT II expression was detected in leaves, petioles, stems, and roots of transgenic poplar, thereby indicating that the nos promoter is potentially effective for general constitutive expression of transgenes. NPT expression varied among transgenic poplar lines and among organs for one transgenic line, Tr15. With Tr15, NPT II levels were highest in older leaves and petioles. These results indicate that screening of several transgenic lines may be required to identify lines with optimal transgene expression.

  • PDF

High-level Expression and Characterization of the Human Interleukin-10 in the Milk of Transgenic Mice

  • Zneng, Z. Y.;B. H. Sohn;K. B. Oh;W. J. Shin;Y. M. Han;Lee, K. K.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.46-46
    • /
    • 2003
  • Interleukin-10 (IL-10) is a homodimeric protein with a wide spectrum of anti-inflammatory and immune activities. It inhibits cytokine production and expression of immune surface molecules in various cell types. The transgenic mice carrying the human IL-10 gene in conjunction with the bovine $\beta$-casein promoter produced the human IL-10 in milk during lactation. Transgenic mice were generated using a standard method as described previously. To screen transgenic mice, PCR was carried out using chromosomal DNA extracted from tail or toe tissues with a primer set. In this study, stability of germ line transmission and expression of IL-10 gene integrated into host chromosome were monitored up to generation F15 of a transgenic line. When female mouse of generation F9 was crossbred with normal male, generation F9 to F15 mice showed similar transmission rates (66.0$\pm$20.13%, 61.5$\pm$16.66%, 41.1$\pm$8.40%, 40.7$\pm$20.34%, 61.3$\pm$10.75%, 49.2$\pm$18.82%, and 43.8$\pm$25.91%, respectively), implying that the IL-10 gene can be transmitted stably up to long term generation in the transgenic mice. For ELISA analysis, IL-10 expression levels were determined with an hIL-10 ELISA and a mIL-10 ELISA kit in accordance with the supplier's protocol. Expression levels of human IL-10 from milk of generation F9 to F13 mice were 3.6$\pm$1.20 mg/ml, 4.2$\pm$0.93 mg/ml, 5.7$\pm$1.46 mg/ml, 6.3$\pm$3.46 mg/ml, and 6.8$\pm$4.52 mg/ml, respectively. These expression levels are higher than in generation F1 (1.6 mg/ml) mice. We concluded that transgenic mice faithfully passed the transgene on their progeny and successively secreted target proteins into their milk through several generations, although there was a little fluctuation in the transmission frequency and expression level between the generations.

  • PDF

Obtainment and Characterization of Brain Tumor Cell Using Vasopressin-SV40 T Ag Transgenic Mouse

  • Kim, Sung-Hyun;Lee, Eun-Ju;Kim, Myoung-Li;Park, Jun-Hong;Cho, Kyoungin;Jung, Boo-Kyung;Kim, Hee-Chul;Hwnag, Sol-Ha;Lee, Hoon-Taek;Ryoo, Zae-Young
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.105-105
    • /
    • 2003
  • In previous reports, pVPSV.IGR2.1 transgenic mouse were described that brain tumor and lymphoma by reason of Vasopressin-SV40 T antigen. In this study, we produced pVPSV.IGR3.6 transgenic mouse that used pVPSV.IGR3.6 vector. Expression of transgene was vary different in transgenic mouse. We obtained 6 transgenic mouse line, moreover they had died at the age of 2-6 weeks without transmitting the transgene to their offspring, and had tumorigenesis on same location with pVPSV.IGR2.1 transgenic mouse. Only a founder mouse was investigated for expression of fusion gene. Here we extended this transgenic approach to the study of tumor progression. From the mouse, we confirmed brain tumor cell, after then cultured for investigate characterization. In this report, we demonstrate that reduction of survival rate in transgenic mouse fused vasopressin gene length, acquisition of brain tumor cell, composition with astrocyte cells and neuronal cells. Finally, cells had no change with increase of passage.

  • PDF

Improvement of Transformation Efficiencies using Agrobacterium-Mediated Transformation of Korean Rice

  • Cho, Joon-Hyeong;Lee, Jang-Yong;Kim, Yong-Wook;Lee, Myoung-Hoon;Park, Seong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.61-68
    • /
    • 2004
  • A reproducible transformation system via optimized regeneration media for Korean rice cultivars was established using Agrobacterium tumefeciens LBA4404 (pSBM-PPGN; gusA and bar). Although japonica rice genotypes were easier to produce transgenic plants compared to Tongil type cultivars, transformation efficiencies were not always correlated with regeneration efficiencies of non-transgenic callus on the control medium. Regeneration efficiencies of Donganbyeo, Ilmibyeo, and Manchubyeo were over 50% in non-transgenic control, however, transformation efficiencies were significantly low when only sucrose was added to the media as a carbon source. However, the medium, MSRK5SS-Pr (or MSRK5SM-Pr), that contains $5\textrm{mgL}^{-1}$ kinetin, $0.5\textrm{mgL}^{-1}$ NAA, 2 % sucrose (or maltose), 3% sorbitol, and $500\textrm{mgL}^{-1}$ proline, was the most efficient not only for regeneration of non-transgenic callus but also for regeneration of transgenic callus in the presence of L-phosphinotricin (PPT). Average transformation efficiencies of 16 Korean rice cultivars were significantly enhanced by using the optimized medium from 1.5% to 5.8% in independent callus lines and from 2.9% to 19.4% in tromsgenic plants obained. Approximately 98.9% (876 out of 885) transgenic plants obtained on optimized media showed basta resistance. Stable integration, inheritance and expression of gusA and bar genes were continued by GUS assay and PCR and Southern analysis of the bar gene. With Pst1 digestion of genomic DNA of transgenic plants, one to five copies of T-DNA segment were observed; however, 76% (19 out of 25 transgenic plants) has low copy number of T-DNA. The transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.