• Title/Summary/Keyword: Transgenic insect

Search Result 52, Processing Time 0.028 seconds

Gene Manipulation of Pin 2(Proteinase Inhibitor II) to the Cottonwood Leaf Beetle(Coleoptera : Chrysomelidae) in Transgenic Poplar(Populus deltodies × P. nigra) (형질전환(形質轉換)된 포플러의 딱정벌레에 대한 저항성(抵抗性) 유전자(遺傳子)(Proteinase Inhibitor II) 발현(發現))

  • Kang, Hoduck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.407-414
    • /
    • 1997
  • The resistance of a non-transgenic poplar clone, 'Ogy' and three transgenic poplar lines to the cottonwood leaf beetle, Chrysomela scripta F., was evaluated by in vitro feeding. The lines were transformed with neomycin phosphotransferase II(NPT II) as a selectable marker, proteinase inhibitor II(pin2) as a resistance gene, and CaMV 35S as a promoter. An efficient method of sterilizing the beetle eggs and introducing them into plant tissue cultures was developed. The resistance of the transgenic lines was investigated in terms of effects tin leaf area consumed, insect weight, insect developmental stages, and plantlet root dry weight after feeding. Also, leaf area consumed was examined by leaf age as measured through leaf plastochron index(LPI). The leaf area consumed and insect weight were highly significant between transformants and control, and insect development in vitro was significant among the transgenic lines. Larval infestation was the most severe around LPI 4 to 5 which were young leaves. The system provided a quick, highly controlled method to screen developing transgenic plantlets directly.

  • PDF

Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) with the pinII gene and bioassay for diamondback moth resistance

  • Zhang, Junjie;Liu, Fan;Yao, Lei;Luo, Chen;Zhao, Qing;Huang, Yubi
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • Non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) is a popular vegetable in Asian countries. The diamondback moth (DBM), Plutella xylostella (L.), an insect with worldwide distribution, is a main pest of Brassicaceae crops and causes enormous crop losses. Transfer of the anti-insect gene into the plant genome by transgenic technology and subsequent breeding of insect-resistant varieties will be an effective approach to reducing the damage caused by this pest. We have produced transgenic non-heading Chinese cabbage plants expressing the potato proteinase inhibitor II gene (pinII) and tested the pest resistance of these transgenic plants. Non-heading Chinese cabbages grown for 45 days on which buds had formed were used as experimental materials for Agrobacterium-mediated vacuum infiltration transformation. Forty-one resistant plants were selected from 1166 g of seed harvested from the infiltrated plants based on the resistance of the young seedlings to the herbicide Basta. The transgenic traits were further confirmed by the Chlorophenol red test, PCR, and genomic Southern blotting. The results showed that the bar and pinII genes were co-integrated into the resistant plant genome. A bioassay of insect resistance in the second generation of individual lines of the transgenic plants showed that DBM larvae fed on transgenic leaves were severely stunted and had a higher mortality than those fed on the wild-type leaves.

Environmental Risk Assessment of Watermelon Grafted onto Transgenic Rootstock Resistant to Cucumber Green Mottle Mosaic Virus (CGMMV) on Non-Target Insects in Conventional Agro-Ecosystem

  • Yi, Hoon-Bok;Park, Ji-Eun;Kwon, Min-Chul;Park, Sang-Kyu;Kim, Chang-Gi;Jeong, Soon-Chun;Yoon, Won-Kee;Park, Sang-Mi;Han, Sang-Lyul;Harn, Chee-Hark;Kim, Hwan-Mook
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • We investigated the impact of watermelon grafted onto Cucumber Green Mottle Mosaic Virus (CGMMV)-resistant transgenic watermelon rootstock on insects as non-target organisms in a greenhouse in 2005. We quantitatively collected insect assemblages living on leaves and flowers, and we used sticky traps to collect alate insects. We compared the patterns of insect assemblages and community composition, cotton aphid (Aphis gossypii Glover) on watermelon leaves and western flower thrip (Frankliniella occidentalis Trybom) on watermelon male flowers, between CGMMV-resistant transgenic watermelon (TR) and non-transgenic watermelon (nTR). Non-parametric multidimensional scaling (NMS) ordination verified that insect assemblages on leaves and sticky traps were different between TR and nTR (P<0.05). The insect assemblages on male flowers were not statistically significant. Multi-response permutation procedures proofed our results from NMS results (P>0.05). Conclusively, TR watermelons appear to have some adverse effects on the population of cotton aphids on leaves and sticky traps, but watermelon male flowers do not show an adverse effect. Further research is required to assess the effect of TR on the aphid and western flower thrip. Life table experiments might support the specific reason for the adverse effects from leaf assemblages. Assessment of non-target impacts is an essential part of the risk assessment of non-target insects for the impact of transgenic organisms.

Comparison of the Nutritional Compositions of Insect-Resistant and Glufosinate-Tolerant Rice and Conventional Rice

  • Park, Soo-Yun;Lee, Si Myung;Yeo, Yunsoo;Kweon, Soon Jong;Cho, Hyun Suk;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.1
    • /
    • pp.5-9
    • /
    • 2013
  • The nutritional composition of transgenic rice (Agb0101) with bar and modified cry1Ac1 genes grown with herbicides was compared with that of its non-transgenic counterpart. The analyzed components (proximates, amino acids, fatty acids, minerals, vitamins, trypsin inhibitors, and phytic acid) in the herbicide-treated Agb0101 brown rice were substantially equivalent to those of its non-transgenic counterpart.

Molecular Breeding for Plant Disease Resistance : Prospects and Problems

  • Park, Hyo-Guen
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The technique of plant transformation has started to show off its great power in the area of plant breeding by commercially successful introduction of transgenic varieties such as herbicide tolerant soybean and insect resistant corn in USA with an unimaginable speed. However, in contrast with the great success in the commercialization of herbicide tolerance and insect resistance, the transformation works on disease resistance has not yet reached the stage of full commercialization. This review surveys the current status of molecular breeding for plant disease resistance and their limits and problems. Some novel ideas and approaches in molecular breeding for disease resistance are introduced.

  • PDF

Molecular Breeding of Transgenic Tomato Plants Expressing the ${\delta}-Endotoxin$ Gene of Bacillus thuringiensis subsp. tenebrionis (살충성 형질 전환 토마토 식물체의 분자 육종)

  • Rhim, Seong-Lyul
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.137-140
    • /
    • 1998
  • The transgenic tomato plants showing the insecticidal activity against the coleopteran insect larvae have been bred to the 4th generation $(R_4)$. The Bacillus thuringiensis subsp. tenebrionis (B.t.t.)-toxin gene and the expression were detected in the $R_4$ transgenic plants. The expression of the toxin gene conferred a coleopteran insect larvae tolerance to the transgenic tomato plants. The ploidy levels of the $R_4$ transgenic plants were diploid. The results indicated that the toxin gene was inherrited to the next generation and expressed. Such a molecular breeding can provide a method for a permanent control of insects a agronomic relevance.

  • PDF

Comparison of Insect Fauna in Transgenic and Common Rice Paddy Fields (형질전환 벼와 일반 벼간 곤충상 비교)

  • Park, Taechul;Choe, Hojeong;Jeong, Hyoujin;Jang, Hojung;Kim, Jukon;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.488-497
    • /
    • 2018
  • Quantitative classification of insect fauna in transgenic rice in 2 LMO(Living genetically Modified Organism) isolated paddy fields (Gyeongsang National University, Gyeongbuk National University) and rice in 4 paddy fields(Duryang 1, Duryang 2, Hwagye 1, Hwagye 2), were evaluated for consecutive 5 years (2013 to 2017) in Sacheon, Gyeongnam province, and for 2 consecutive years (2015 to 2016) in Gunwi Gyeongbuk province. Sampling insect fauna were evaluated by black light trapping, sticky trapping, visual surveying, and sweeping methods in each target paddy field, respectively. A total of 37,941 individuals, of 464 species from 15 orders, were collected in Sacheon for 5 years. A total of 10,030 individuals, of 366 species from 13 orders, were collected in Gunwi for 2 years. Based on results of comparison between transgenic and non-transgenic paddy fields for 5 consecutive years, the similarity index between LMO paddy field and common paddy field is not different. Thus, this difference is not due to the environment, not the LMO.

Impact of vitamin-A-enhanced transgenic soybeans on above-ground non-target arthropods in Korea

  • Sung-Dug, Oh;Kihun, Ha;Soo-Yun, Park;Seong-Kon, Lee;Do won, Yun;Kijong, Lee;Sang Jae, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.875-890
    • /
    • 2021
  • In order to confirm the safety of a genetically modified organism (GMO), we assess its potential toxicity on non-target insects and spiders. In this study, the effects of GM soybean, a type of vitamin-A-enhanced transgenic soybean with tolerance to the herbicide glufosinate, were assessed under a field condition. The study compared this vitamin-A-enhanced transgenic soybean and a non-GM soybean (Gwangan) in a living modified organism (LMO) isolated field of Kyungpook National University (Gunwi) and the National Institute Agricultural Sciences (Jeonju) in the Republic of Korea in 2019 - 2020. In total, 207,760 individual insects and arachnids, representing 81 families and 13 orders, were collected during the study. From the two types of soybean fields, corresponding totals of 105,765 and 101,995 individuals from the vitamin-A-enhanced transgenic soybean and Gwangan samples areas were collected. An analysis of variance indicated no significant differences (p < 0.05). A multivariate analysis showed that the dominance and richness outcomes of plant-dwelling insects were similar. The data on insect species population densities were subjected to a principal component analysis (PCA) and an orthogonal partial least squares-discriminant analysis (OPLS-DA), which did not distinguish between the two varieties, i.e., the vitamin-A-enhanced transgenic soybean and the non-GM soybean in any cultivated field. However, the results of the PCA analysis could be divided overall into four groups based on the yearly survey areas. Therefore, there was no evidence for the different impact of vitamin A-enhanced transgenic soybean on the above-ground insects and spiders compared to non-GM soybean.

Tomato Yellow Leaf Curl China Virus Impairs Photosynthesis in the Infected Nicotiana benthamiana with βC1 as an Aggravating Factor

  • Farooq, Tahir;Liu, Dandan;Zhou, Xueping;Yang, Qiuying
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.521-529
    • /
    • 2019
  • Tomato yellow leaf curl China virus is a species of the widespread geminiviruses. The infection of Nicotiana benthamiana by Tomato yellow leaf curl China virus (TYLCCNV) causes a reduction in photosynthetic activity, which is part of the viral symptoms. ${\beta}C1$ is a viral factor encoded by the betasatellite DNA ($DNA{\beta}$) accompanying TYLCCNV. It is a major viral pathogenicity factor of TYLCCNV. To elucidate the effect of ${\beta}C1$ on plants' photosynthesis, we measured the relative chlorophyll (Chl) content and Chl fluorescence in TY-LCCNV-infected and ${\beta}C1$ transgenic N. benthamiana plants. The results showed that Chl content is reduced in TYLCCNV A-infected, TYLCCNV A plus $DNA{\beta}$ (TYLCCNV A + ${\beta}$)-infected and ${\beta}C1$ transgenic plants. Further, changes in Chl fluorescence parameters, such as electron transport rate, $F_v/F_m$, NPQ, and qP, revealed that photosynthetic efficiency is compromised in the aforementioned N. benthamiana plants. The presense of ${\beta}C1$ aggravated the decrease of Chl content and photosynthetic efficiency during viral infection. Additionally, the real-time quantitative PCR analysis of oxygen evolving complex genes in photosystem II, such as PsbO, PsbP, PsbQ, and PsbR, showed a significant reduction of the relative expression of these genes at the late stage of TYLCCNV A + ${\beta}$ infection and at the vegetative stage of ${\beta}C1$ transgenic N. benthamiana plants. In summary, this study revealed the pathogenicity of TYLCCNV in photosynthesis and disclosed the effect of ${\beta}C1$ in exacerbating the damage in photosynthesis efficiency by TYLCCNV infection.

Effect of insect-resistant genetically engineered (Bt-T) rice and conventional cultivars on the brown planthopper (Nilaparvata lugens Stål)

  • Sung-Dug, Oh;Eun Ji, Bae;Kijong, Lee;Soo-Yun, Park;Myung-Ho, Lim;Doh-Won, Yun;Seong-Kon, Lee;Gang-Seob, Lee;Soon Ki, Park;Jae Kwang, Kim;Sang Jae, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.511-520
    • /
    • 2022
  • Insect-resistant transgenic rice (Bt-T) expresses a toxic protein (mcry1Ac1) derived from the soil bacterium Bacillus thuringiensis found in the rice cultivar Dongjin with an insecticidal property against rice leaf roller (Cnaphalocrocis medinalis). In this study, to investigate the impact of Bt-T on non-target organisms, the feed and oviposition preferences and biological parameters of brown planthopper (Nilaparvata lugens Stål) were comparatively analyzed in four rice cultivars: Dongjin (parent variety), Ilmi (reference cultivar), Chinnong (brown planthopper resistant cultivar) and Bt-T. In the Bt-T and Dongjin cultivars, the feed preferences were 32.4 ± 8.3 and 34.1 ± 6.8%, and the oviposition preferences were 32.5 ± 5.1 and 30.0 ± 5.3% respectively, and there was no statistical significance between these rices. Additionally, in the Bt-T and Dongjin cultivars, the total lifespans from egg to adult were 39.5 ± 6.9 and 40.0 ± 5.8 days, and the weights of adult females were 1.78 ± 0.14 and 1.72 ± 0.16 mg, respectively. Therefore, there was no statistical difference in the biological parameters between these two varieties. Overall, the results indicate that the insect-resistant transgenic rice (Bt-T) did not negatively affect the reproduction and life cycle of brown planthopper, a non-target organism.