• Title/Summary/Keyword: Transgenic Plants

Search Result 819, Processing Time 0.032 seconds

Molecular Breeding of Transgenic Tomato Plants Expressing the ${\delta}-Endotoxin$ Gene of Bacillus thuringiensis subsp. tenebrionis (살충성 형질 전환 토마토 식물체의 분자 육종)

  • Rhim, Seong-Lyul
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.137-140
    • /
    • 1998
  • The transgenic tomato plants showing the insecticidal activity against the coleopteran insect larvae have been bred to the 4th generation $(R_4)$. The Bacillus thuringiensis subsp. tenebrionis (B.t.t.)-toxin gene and the expression were detected in the $R_4$ transgenic plants. The expression of the toxin gene conferred a coleopteran insect larvae tolerance to the transgenic tomato plants. The ploidy levels of the $R_4$ transgenic plants were diploid. The results indicated that the toxin gene was inherrited to the next generation and expressed. Such a molecular breeding can provide a method for a permanent control of insects a agronomic relevance.

  • PDF

Growth Performance and Field Evaluation of Herbicide-Resistant Transgenic Creeping Bentgrass

  • Lee, Ki-Won;Lee, Byung-Hyun;Seo, Bo-Ram;Kim, Jin-Seog;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.167-170
    • /
    • 2013
  • This study examined the growth performance and field evaluation of the dual herbicide-resistant transgenic creeping bentgrass plants. The effect of glyphosate treatment on the herbicide resistance of the transgenic creeping bentgrass plants was determined, and the non-transgenic control plant withered at the concentration $11{\mu}g/mL$ or higher whereas the transgenic creeping bentgrass plants survived the treatment at the concentration of $3,000{\mu}g/mL$, and the increase of the plant length was repressed as the glyphosate treatment concentration was increased. At field evaluation, glufosinate-ammonium and glyphosate were simultaneously treated to investigate the weed control effect. The results showed that more than 90% of the weeds withered four week after herbicide treatment, while the transgenic creeping bentgrass plants continued to grow normally. Therefore, the dual herbicide-resistant creeping bentgrass plants may be able to greatly contribute to the efficiency of weed control and to the economic feasibility of mowing in places such as golf courses.

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won;Choi, Gi-Jun;Kim, Ki-Yong;Ji, Hee-Jung;Park, Hyung-Soo;Kim, Yong-Goo;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.818-823
    • /
    • 2012
  • Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.

바이러스 외피단백질 유전자로 형질전환된 연초 식물체의 TMV 저항성 발현 및 유전자 안정성

  • 박성원;이기원;이청호;이영기;강신웅;최순용
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.77-81
    • /
    • 1999
  • Tobacco plants(Nicotiana tabacum cv. NC82) transformed with TMV CP cDNA were self-fertilized until 8th generation (R$_{8}$), and the transgenic plants from 6th to 8th generation were analized for their resistance to tobacco mosaic virus(TMV) and stability of the gene expression. The 6th generation of the plants(R$_{6}$) showed high resistance(81-91 %) to TMV at eight weeks after artificial inoculation with the virus. The transgenic cell line 601 was the most prominant in the expression of resistance. 98 % of the plants showed no symptom without any agronomic phynotepe variation when they were inoculated with the virus in a experimental field. However, 2% of the plants were revealed as delay type of symptom with mild mosaic on a few leaves. The viral resistance in greenhouse tests of the 7th generation (R$_{7}$) was 54-64%, and the number of delay type plants were increased than that of 6th generation plants. In the 8th generation, 81 % of the plants was complete resistant to the virus. The TMV CP cDNA of the transgenic plants of each generation was also confirmed by genomic PCR, and there was no systemic viral multiplication in the resistant plants. It suggests that the viral resistance and gene expression of the transgenic plants might be stable through the generations.ons.s.

  • PDF

Selection of Transgenic Potato Plants Expressing Both CuZnSOD and APX in Chloroplasts with Enhanced Tolerance to Oxidative Stress (CuZnSOD와 APX를 엽록체에 발현시킨 산화스트레스 내성 형질전환 감자의 선발)

  • Tang, Li;Kwon, Suk-Yoon;Sung, Chang-K;Kwak, Sang-Soo;Lee, Haeng-Seoon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.109-113
    • /
    • 2004
  • In order to develop transgenic potato plants with enhanced tolerance to multiple stress, we constructed the transformation vector expressing both superoxide dismutase and ascorbate peroxidase genes in chloroplasts under the control of a stress-inducible SWPA2 promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system. Transgenic potato plants were regenerated on MS medium containing 100mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of foreign genes into the potato genome. When potato leaf discs were subjected to methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance than non-transgenic or vector-transformed plants. To further study we selected the transgenic plant lines with enhanced tolerance against MV. These plants will be used for further analysis of stress-tolerance to multiple environmental stresses.

Field Performance and Morphological Characterization of Transgenic Codonopsis lanceolata Expressing $\gamma-TMT$ Gene.

  • Ghimire, Bimal Kumar;Li, Cheng Hao;Kil, Hyun-Young;Kim, Na-Young;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Chung, Ill-Min;Lee, Sun-Joo;Eom, Seok-Hyun;Cho, Dong-Ha;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.5
    • /
    • pp.339-345
    • /
    • 2007
  • Field performance and morphological characterization was conducted on seven transgenic lines of Codonopsis lanceolata expressing ${\gamma}-TMT$ gene. The shoots were obtained from leaf explants after co-cultivation with Agrobacterium tume-faciens strain LBA 4404 harboring a binary vector pYBI 121 that carried genes encoding ${\gamma}-Tocopherol$ methyltransferase gene (${\gamma}-TMT$) and a neomycin phosphotransferase II gene (npt II) for kanamycin resistance. The transgenic plants were transferred to a green house for acclimation. Integration of T-DNA into the $T_0\;and\;T_1$ generation of transgenic Codonopsis lanceolata genome was confirmed by the polymerase chain reaction and southern blot analysis. The progenies of transgenic plants showed phenotypic differences within the different lines and with relative to control plants. When grown in field, the transgenic plants in general exhibited increased fertility, significant improvement in the shoot weight, root weight, shoot height and rachis length with relation to the control plants. However, all seven independently derived transgenic lines produced normal flower with respect to its shape, size, color and seeds number at its maturity. Indicating that the addition of a selectable marker gene in the plant genome does not effect on seed germination and agronomic performance of transgenic Codonopsis lanceolata. $T_1$ progenies of these plants were obtained and evaluated together with control plant in a field experiment. Overall, the agronomic performance of $T_1$ progenies of transgenic Codonopsis lanceolata showed superior to that of the seed derived non-transgenic plant. In this study, we report on the morphological variation and agronomic performance of transgenic Codonopsis lanceolata developed by Agrobacterium transformation.

Transgenic Tobacco Plants Expressing the Bacterial Levansucrase Gene Show Enhanced Tolerance to Osmotic Stress

  • Park, Jeong-Mee;Kwon, Suk-Yoon;Song, Ki-Bang;Kwak, Ju-Won;Lee, Suk-Bae;Nam, Young-Woo;Shin, Jeong-Sheop;Park, Young-In;Rhee, Sang-Ki;Paek, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.213-218
    • /
    • 1999
  • Fructans are polyfructose molecules that function as nonstructural storage carbohydrates in several plants. In addition, it has been suggested that, due to their solubility, they can play an important role in helping plants survive periods of osmotic stress. In order to study the effect of levan synthesis on plant growth, the coding region of the levansucrase gene, which was isolated from Zymomonas mobilis, was introduced into tobacco plants using Agrobacterium tumefaciens-mediated transformation. The presence of the levansucrase gene in transgenic plants was verified by genomic DNA gel blot analysis. RNA gel blot and immunoblot analyses showed an accumulation of the corresponding transcript and protein product of the bacterial levansucrase gene in transgenic plants. Furthermore, a thin layer chromatography analysis revealed that fructans were synthesized and deposited in transgenic tobacco plants. When $T_1$ seeds were germinated and grown under polyethylene glycol-mediated drought stress or cold stress, the transgenic seedlings displayed a substantially higher level of growth than that of untransformed plants. These results suggest that fructans may playa significant role in the tolerance of plants under osmotic stress.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (lpomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

Physiology and Growth of Transgenic Tobacco Plants Containing Bacillus subtilis Protoporphyrinogen Oxidase Gene in Response to Oxyfluorfen Treatment (Bacillus subtilis Protoporphyrinogen Oxidase 유전자 형질전환 담배의 Oxyfluorfen 처리에 대한 생리 · 생장반응)

  • Lee, J.J.;Kuk, Y.I.;Chung, J.S.;Lee, S.B.;Choi, K.W.;Han, O.S.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.237-245
    • /
    • 1998
  • The transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants containing Bacillus subtilis protoporphyrinogen oxidase gene with cauliflower mosaic virus 35S promoter have recently been generated by using Agrobacterium-mediated gene transformation. The nontransgenic and the transgenic tobacco plants were compared with respect to responses to diphenyl ether herbicide oxyfluorfen and under various environmental conditions. Both cellular leakage and lipid peroxidation caused by oxyfluorfen were found to be less in the transgenic than in the nontransgenic plants. Growth responses of the transgenic plants under various temperature, light, and water conditions were almost the same as those of the nontransgenic plants, although the transgenic plants exhibited slightly more retarded growth under low light or saturated water condition. These results revealed that the transgenic tobacco plants containing B. subtilis protoporphyrinogen oxidase gene under cauliflower mosaic virus 35S promoter were relatively resistant to oxyfluorfen and exhibited normal growth pattern. Possible mechanism of resistance to oxyfluorfen in the transgenic plants is also discussed.

  • PDF