• Title/Summary/Keyword: Transformer oils

Search Result 75, Processing Time 0.02 seconds

Hydrodynamic Modeling for Discharge Analysis in a Dielectric Medium with the Finite Element Method under Lightning Impulse

  • Lee, Ho-Young;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.397-401
    • /
    • 2011
  • The response of lightning impulse voltage was explored in dielectric liquids employing hydrodynamic modeling with three charge carriers using the finite element method. To understand the physical behavior of discharge phenomena in dielectric liquids, the response of step voltage has been extensively studied recently using numerical techniques. That of lightning impulse voltage, however, has rarely been investigated in technical literature. Therefore, in this paper, we tested impulse response with a tip-sphere electrode which is explained in IEC standard #60897 in detail. Electric field-dependent molecular ionization is a common term for the breakdown process, so two ionization factors were tested and compared for selecting a suitable coefficient with the lightning impulse voltage. To stabilize our numerical setup, the artificial diffusion technique was adopted, and finer mesh segmentation was generated along with the axial axis. We found that the velocity from the numerical result agrees with that from the experimental result on lightning impulse breakdown testing in the literature.

A study on the improvement of the thermal expansion formula of the insulating oil in electric facilities (전력설비 절연유 열팽창 계산식 개선에 관한 연구)

  • Rim, Seong-Hwang;Moon, Bong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.153-156
    • /
    • 2001
  • The transformer and the OF cable are cooled and insulated by insulating oils in their body. The insulating oil expands or contracts with the heat transfer according to the operating conditions of the electric facilities. So we install the $N_2$ gas tank connected with the insulating oil system to overcome the change. The change of the insulating oil volume for the operation temperature range must be calculated to decide the $N_2$ gas volume and to set the alarm point for safe operation. It is known that this change is proportional to the temperature change and to the insulating oil volume if the temperature change is small enough.[1][11] However this proportional formula has been accepted generally in the design of electric facilities for wide operation temperature range such as $40^{\circ}C{\sim}125^{\circ}C$. Hence, it makes large errors in calculation which car result in serious damage against safe operation of the electric facilities. This paper presents a improved method of calculating the accurate change of the insulating oil volume to insure the safe operation of electric facilities.

  • PDF

A Study on Evalution of Corrosion Properties in cooling tube of water cooling transformers (수냉식변압기 냉각튜브의 부식특성 평가에 관한 연구)

  • Jeong, Nyeon-Ho;Min, Byung-Yeon;Park, Hyun-Joo
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.216-222
    • /
    • 2010
  • Most of the thirteen substations in operation in the metropolitan area were installed around the year 2000, and since water cooling methods are used to directly withdraw heat from transformer oils, a stable supply of electric power is required through optimal maintenance of facilities. The water cooling tower installed outdoors, which uses the water supply as sprinkler water, experiences the most problems. Since more than 90% of the cooling water is reused, the dissolved composition in the water becomes concentrated due to long operating hours, and impurities dissolve in the water due to air flowing in from the outside, forming hard scales on the outer surface of the cooling tube, and in extreme cases, reacting with the tube material composition, leading to corrosion. As a result, not only is cooling efficiency lowered, but in extreme cases the cooling tube must be replaced. In this study, the characteristics and composition of the scales formed on the cooling tube were analyzed and corrosion characteristics of material types were identified in order to find an efficient maintenance method for cooling tubes. In addition, the degree of dissolution of various chemicals were investigated during the removal of scales that have been formed.

Contamination level and congener profiles of PCBs, Co-PCBs and PCDD/DFs in transformer insulation oil samples (변압기 절연유 중 PCBs, Co-PCBs 및 PCDD/PCDFs 오염수준 및 이성체 분포)

  • Kim, Kyoung-Soo;Kim, Jong-Guk;Shin, Sun-Kyoung;Kim, Kyoung-Sim;Song, Byung-Joo
    • Analytical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.263-271
    • /
    • 2006
  • The levels of total PCBs, Co-PCBs and PCDD/Fs in the transformer insulation oil samples obtained using GC/ECD and HRGC/HRMS were ranged from N.D. to 77.3 ppm, from 0.0863 to 2.49 ppm and from N.D. to 0.00241 ppm, respectively. In terms of WHO-TEQ values, Co-PCBs and PCDD/Fs were ranged from 23.3 to 600 pgTEQ/g and from N.D. to 128 pgTEQ/g, respectively (${\Sigma}Co$-PCBs+PCDD/Fs concentration was calculated 24.4~728 pgTEQ/g). Although, the contribution of PCDD/Fs was below 12% in total TEQ concentration, it is suggested contamination of PCDD/Fs in transformer insulation oils. Among 10 samples, 4 samples showed higher concentration than 2 ppm (specific waste criterion of Korea) and Aroclor 1242, 1248, 1254 and 1260 was detected in samples as a single or mixture of Aroclor. It was shown reliable relationship between concentration of Co-PCBs and those of PCDD/Fs (p<0.003), however, was not shown between production year of transformer and concentration of PCBs. The distribution pattern of Co-PCB congeners showed that the ratios of mono-ortho substituted congeners were higher than non-ortho substituted congeners. Among that, PCB-118 congener was predominant. In addition, the OCDD congener was predominated in PCDD/Fs congeners as above 53%. Moreover, the congener pattern of Co-PCBs was similar to that of Aroclor as well as ambient air, which suggested that PCBs volatilization from transformer insulation oil affected the pattern of Co-PCBs in ambient air.

Analytical method of PCBs-containing solid wastes (PCBs 함유 고상폐기물의 분석방법 고찰)

  • Park, Jin Soo;Kang, Young Yeul;Song, Ki Bong;Jeon, Tea Wan;Chun, Jin Won;Shin, Sun Kyoung;Jung, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.471-479
    • /
    • 2009
  • This study was performed to improve the analytical methods and re-establish the regulatory standard of PCBs-containing solid wastes for sufficient management in which has been concerned internationally. To do this, the sampling, pre-treatment and quantification methods which were used in USA and Japan were discussed. It was thought properly that new standard of PCBs-containing solid wastes was established through correlation with PCBs concentration of transformer oil. The surface wipe sampling was selected in the nonporous materials and cutting sampling in the porous materials. In the absence of transformer oils, electrical equipment is PCB-contaminated if it has PCBs at ${\geq}0.4{\mu}g/100cm^2$ as measured by a wipe test of a nonporous surface and if it has at 0.04 mg/L as measured by cutting test of a porous material. Also, new analytical methods for PCBs containing solid waste were proposed.