• Title/Summary/Keyword: Transformer inrush current

Search Result 80, Processing Time 0.036 seconds

Help of Microcontroller on Voltage Control to Reduce Transformer Inrush Current

  • Fard, Ali Asghar Fathollahi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • At the moment of transformer energization by the supply voltage, a high current called transient inrush current, which may rise to ten times the transformer full load current, could be drawn by the primary winding. This paper discusses a microcontroller circuit with the intention of controlling and limiting the inrush current for a transformer, by the method of ramping up the supply voltage feeding to the transformer primary. Simulations and the experimental results show a significant reduction of inrush current, when the ramping up voltage is applied to the three-phase transformer load. The inrush current could be almost eliminated if the correct switching step rate is chosen.

Agent based algorithm for detecting sympathetic inrush of a transformer (Agent 기반 변압기의 Sympathetic inrush 판단 방법)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Park, Jong-Min;Hwang, Tae-Keun;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.234-235
    • /
    • 2006
  • The protection relay keeps electric power facilities by using signals of the voltage and current which are input and output terminals of each equipment. Each relay performances protection algorithm by using informations of own protecting zone. To prevent the mal-operation in inrush current, established transformer differential protection method uses the second harmonics as blocking signal. This method is not operate at the initial inrush. However, in case of the parallel operation, if the initial inrush is occurred in one transformer which is generated, the sympathetic inrush Is occurred in adjacent transformer. This paper approach the sympathetic inrush detecting algorithm of a transformer based on agent. Proposed algorithm, when inrush current occurred, distinguish sympathetic inrush or not by using differential current of adjacent transformer. This algorithm have the advantage of the distinguishing initial inrush and sympathetic inrush at operation of parallel transformer

  • PDF

Analysis of Power Quality by Transformer Inrush Current (변압기 여자돌입에 의한 전력품질 분석)

  • Seo, Hun-Chul;Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Young-Sik;Cho, Burm-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.932-937
    • /
    • 2008
  • The transformer inrush current can cause a voltage drop by source impedance. This current can impact sensitive loads by the voltage drop. Therefore, it is necessary to take measures to limit this inrush current. This study, described in this paper, analyzes the power quality affected by transformer inrush current using the X power system in Korea. The Electromagnetic Transients Program(EMTP) is used to analyze the transient phenomenon. We discuss a method to model the hysteresis curve of the transformer in EMTP. We carried out various simulations to analyze the power quality during transformer energization. The analysis results of voltage drop by the inrush current occurrence when certain requirements are met are presented.

Modeling of Transformer Inrush Current on Jeju Power System using EMTP (EMTP를 이용한 제주계통의 여자돌입전류 모델링)

  • Seo, H.C.;Yeo, S.M.;Kim, C.H.;Lyu, Y.S.;Cho, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.95-97
    • /
    • 2007
  • Transformer inrush current can cause the voltage drop by source impedance. The accurate modeling and analysis for inrush current is first step to limit the inrush current and improve the power qualify. This paper presents the modeling of transformer inrush current by EMTP-RV using Jeju power system, Korea. The method to model the hysteresis curve of transformer in EMTP-RV is discussed. Simulations demonstrate the verification of modeling of inrush current by comparing the data recorded in field with simulation values and analyzing the harmonics of inrush current.

  • PDF

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.

Protective Relaying Algorithm for Transformer Using Wavelet Transform (웨이블렛 변환을 이용한 변압기 보호계전 알고리즘)

  • 홍동석;이종범
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.2
    • /
    • pp.134-141
    • /
    • 2003
  • The power transformer is one of the very important electric facilities in power systems. Recently, current differential relay is widely used to protect such power transformer But if inrush occurs in transformer, relay can be tripped by judging like internal fault. Therefore the correct discrimination between internal winding fault, inrush and overexcitation should be performed. This paper presents a new protective relaying algorithm which discriminates inrush, internal faults and overexcitation of transformer modelled using BCTRAN and HYSDAT of EMTP. Discrimination between internal winding fault and inrush is revealed in simulation within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has better discrimination characteristics in various cases thin the current relaying for protection of transformer.

An analysis of limiting conditions of excess inrush currents and a derivation of the probability equations of inrush current occurrence (돌입전류의 제어조건 해석 및 돌입전류 발생 확률식의 유도)

  • 박영문
    • 전기의세계
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 1965
  • Because of the flat slope of the magnetic characteristic curves at high saturation, the transformer inrush current peakes may assume an extreme magnitude. Even though such is rarely any danger to the transformer itself, the currents can cause serious problems in associated apparatus. This paper has analyzed various limiting factors of excess inrush currents, and then has suggested how to determine the frequency of encountering the inrush current peaks higher than an arbitrarily chosen value by deriving the probability equations of inrush current occurrence.

  • PDF

THE STUDY 01 CHARACTERISTICS OF INRUSH CURRENTS FOR HIGH POWER SHORT-CIRCUIT TESTING TRANSFORMER (단락시험용 대전류변압기 돌입전류특성에 관한 연구)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun;Kim, Sun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.695-696
    • /
    • 2006
  • The inrush current of transformer cause saturation effects of recovery voltage for short-circuit power testing. the inrush current depends on the residual flux of the transformer core. when inrush current occurs, it is contains a d.c. component and the high harmonic content of the current are of importance to relay protection of testing circuit. this paper describes of decrease method of inrush current for high power short-circuit testing transformer.

  • PDF

Analysis of Inrush Current Reduction Rate According to Insertion Resistance of the Superconducting Fault Current Limiter (초전도 한류기 투입저항 변화에 따른 여자돌입전류 저감률 분석)

  • Park, Se-Ho;Seo, Hun-Chul;Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.257-258
    • /
    • 2008
  • The inrush current of a transformer is a high-magnitude and harmonic-rich current generated when the transformer core is driven into saturation during energizing. The inrush current usually leads to undesirable effects, for example potential damage to the transformer, misoperation of a protective relay, and power quality deterioration in the distribution power system. Inrush current reduction is therefore important for power system operation. In this paper, to reduce the inrush current, the insertion resistance of the Superconducting Fault Current Limiter (SFCL) that is connected in series with the transformer in the distribution system is used. This paper implements the SFCL by using the Electromagnetic Transient Program-Restructured Version (EMTP-RV) to model the SFCL in the distribution system. The simulation results show the beneficial effects of the SFCL for reduction of the inrush current.

  • PDF

The analysis of power quality characteristics in high speed train through neutral section of catenary system (절연구간운행 고속철도차량 전력품질 특성 분석)

  • Hong, Hyun-Pyo;Choi, Eui-Seong;Lee, See-Bin;Lee, Hee-Soon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.634-643
    • /
    • 2011
  • The neutral section was installed in order to prevent conflict with different phase angle source in electric railway catenary system. The speed of electric train reduced due to coasting operation by notch off when it passed the neutral section. And, the catenary wire was damaged and the accident might be happened because of the arc generation when the electric train passed the neutral section with notch off condition. The inrush current of main transformer installed tiling train is analyzed during the operation of MCB(main circuit break) passing through the neutral section. The instantaneous waveform of load current were analyzed in case of powering and regenerative braking. Inrush current waveform with run of AC railway train showed that inrush current waveform and harmonics, the inrush current generated from main transformer in train has bad effects on power quality problem. In order to reduce these inrush currents, the MCB is connected when the phase angle of voltage is 90 degree. This paper is to measure inrush current and harmonics in main transformer of high speed train in neutral section of electric railway. This measurement report is used to control minimum inrush current in algorithm and power phase angle.

  • PDF