• Title/Summary/Keyword: Transformer Type

Search Result 668, Processing Time 0.033 seconds

Transformation Characteristics of Multi layed Ring-dot type Piezo Transformer (적층형 Ring-dot type 압전변압기의 변압특성)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.671-674
    • /
    • 2004
  • This paper presents design and analysis of multi-layered ring-dot type piezoelectric transformer. These transformers are useful for step up and step down. The transformers consist of disk type multi-layered piezoelectric ceramic plates. The finite element method(FEM) was used for analysis transformer. Vibration mode, electric field and equivalent elastic strain of piezoelectric transformer were simulated by changing frequency. As results, the strain was distributed in isolation part entirely. We can get the operated in step up transformer when the inner side electrode using by input parts. Also we can get the step down transformers using by input Part as outer side electrode. The step up ratio and step down ratio was increased by decreasing inner side electrode. The resonance frequency was increased by increasing inner side electrode when the transformer was operated in step down transformer. But the step up one was decreased. From these results, we can expect to multi-layered ring-dot type piezo transformers as step up and step down transformers.

  • PDF

A Study on the Characteristics of Circular Piezoelectric Transformer which has Crescent-shaped Input Type (Crescent-shaped Input Type 원형압전변압기의 특성 연구)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a new disk-type piezoelectric transformer. The input side of the transformer has a crescent-shaped electrode and the output side has a focused poling direction. The piezoelectric transformers operated in each transformer's resonance vibration mode. The electrodes and poling directions on commercially available piezoelectric ceramic disks were designed so that the planar or shear mode coupling factor $(k_p\;k_{15})$ becomes effective rather than the transverse mode coupling factor $(k_{31})$. ANSYS finite element code was used to analyze transformer behavior and to optimize electrode and poling configurations. The voltage step-up ratio of the proposed transformer has been markedly improved in comparison with that of the equivalent rectangular(Rosen) type. A single layer prototype transformer, $20\sim30mm$ in diameter and $1.0\sim3.5mm$ thick, was fabricated, such as step-up ratio, power transformation efficiency, and temperature were measured. While the transformer was driving a Cold Cathode Fluorescent Lamp(CCFL), the temperature field of the transformer was also observed.

Analysis on Fault Current Limiting Characteristics of Three-Phase Transformer Type SFCL using Double Quench According to Three-Phase Ground-Fault Types (이중퀜치를 이용한 삼상변압기형 초전도한류기의 삼상지락 고장 종류에 따른 고장전류 제한 특성 분석)

  • Shin-Won Lee;Tae-Hee Han;Sung-Hun Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.614-619
    • /
    • 2023
  • The fault current limiting characteristics of three-phase transformer type superconducting fault current limiter (SFCL), which consisted of three-phase primary and secondary windings wound on E-I iron core, one high-TC superconducting (HTSC) element connected with the secondary winding of one phase and another HTSC element connected in parallel with other two secondary windings of two phases, were analyzed. Unlike other three-phase transformer type SFCLs with three HTSC elements, three-phase transformer type SFCL using double quench has the merit to perform fault current limiting operation for three-phase ground faults with two HTSC elements. To verify its proper three-phase ground fault current limiting operation, three-phase ground faults such as single-line ground, double-line ground and triple-line ground faults were generated in three-phase simulated power system installed with three-phase transformer type SFCL using double quench. From analysis of its fault current limiting characteristics based on tested results, three-phase transformer type SFCL using double quench was shown to be effectively operated for all three-phase ground faults.

Design and Analysis of A Rectangular Type Core for A Contactless Power Transmission system (비접촉 진력전송 시스템을 위한 'ㅁㅓ'형 코어 설계 및 분석)

  • Jin, Kang-Hwan;Kim, Ji-Min;Kim, Soo-Hong;Kim, Eun-Soo;Kim, Yoon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • In the transformer that is used for the contactless power transmission system, the primary and secondary sides are separated structurally unlike general transformers. When the contactless transformer is built, it forms relatively bigger air gap than the general transformer. Thus it is difficult to transfer energy from the primary side input to the secondary side output with high power efficiently because of low coupling coefficient. This paper proposes a contactless transformer using the rectangular type core that maintains high coupling coefficient even when it has relatively large air gap. The performance characteristics of the proposed transformer are compared with the transformer using general EE core to the air gap variation. The proposed contactless system using rectangular type core and dc-dc full bridge converter, and the system using EE core type and dc-dc full bridge converter are respectively implemented and their performance characteristics are verified by the simulation and experiment.

Dielectric Insulation properties of Double Pancake coil type HTS Transformer (Double Pancake형 고온초전도 변압기의 전기적 절연 특성)

  • 백승명;정종만;이정원;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.494-498
    • /
    • 2002
  • HTS transformer experimentally. High temperature superconductors can only be applied against an engineering specification that has to be determined for each particular application form the design requirements for economic viability and for operation margins in service. High temperature superconducting(HTS) power apparatus are very promising candidates for application. Especially, these advantages make superconducting transformers very promising candidates for application in electrical power engineering and locomotives. In order to realize the HTS transformer, it is necessary to establish the high voltage insulation technique in cryogenic temperature. So far, insulation research of Pancake type HTS transformer is lacking nothing but insulation research of . solenoid type transformer consisted. Therefore, the composite insulation of double pancake coil type transformer are described and ac breakdown voltage characteristics of liquid nitrogen(LN$_2$) under HTS pancake coil electrode made by Bi-2223/Ag are studied. Breakdown in LN$_2$ is dominated electrode shape and distance. The relation between surface flashover voltage is considered for FRP. This research presented basis information of electrical insulation design for double pancake coil type HTS transformer.

  • PDF

Characteristics on the Transformer-Type SFCL According to Reclosing Operation the Voltage Increase (전압증가 시 재폐로 동작에 따른 변압기형 초전도 한류기의 특성 분석)

  • Choi, Soo-Geun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.477-480
    • /
    • 2010
  • Fault current in power system is expected to increase by demand of power capacity. Therefore, when the fault occurred, fault current was increased in the power system. Many studies have been progressed to limit the fault current. Superconducting fault current limiter (SFCL) is one of them which has been studied in worldwide. In this paper, we will analyze characteristics of a transformer-type SFCL by reclosing operation when the voltage increases. Twice opening times in the reclosing of circuit breaker were set as the 0.5 and 15 seconds, respectively. Turn's number of primary and secondary coils set 4:2 and we increased voltages from 120V to 280V for each experiment. By the current waveform, maximum fault current in second and third cycles was lowered when the voltage was increased. In the recovery waveform, recovery time was increased as the voltage was increased. The reason was that power burden of the SFCL increased when consumption power was increased, so the time to get back to SFCL took longer. We compared the characteristics of a resistive-type and transformer-type SFCL. As a result, we found that the fault current of a transformer-type was lower than resistive-type and recovery time of the SFCL was shorter. Consequently, transformer-type SFCL was more profitable for limitation of fault current and recovery time under the same condition for reclosing operation.

A Study on Characteristics of Step-down Piezoelectric Transformer Using Contour Extended Vibration Mode (경방향 확장 진동모드를 이용한 강압용 압전변압기의 특성에 관한 연구)

  • Lee, Won-Jae;Min, Bok-Ki;Song, Jae-Sung;Chong, Hyon-Ho;Park, Tae-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.638-641
    • /
    • 2002
  • This paper presents design and construct of flat type step-down piezoelectric transformer for the application to AC-adapters. This piezoelectric transformer operated in resonance vibration mode. In this paper, Finite element method(FEM) was used for analysis piezoelectric transformers. Vibration mode and electric field of piezoelectric transformer at resonance frequency were simulated. Using this simulation, we manufactured flat type piezoelecric transformer and measured its output characteristics. As results, output power was linearly increased by increasing input power at resonance frequency. And it was found that the transformer exhibited an output power of 11.4[W] at 60[V] input voltage. From these results, we expect that this piezoelecric transformer can be applied to AC adapters.

  • PDF

Influence of a Neutral Line on the Quench Behaviors of a Transformer Type SFCL (변압기형 초전도 한류기의 퀜치특성에 대한 중성선의 영향)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Koo, Kyung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2212-2213
    • /
    • 2008
  • In this paper, we studied the method for simultaneous quenching of a transformer type superconducting fault current limiter (SFCL) with two superconducting elements connected in series. Only an element between two elements of the transformer type SFCL was quenched like the case of the resistive type SFCL. By this quenching characteristics, the power burden of the superconducting element was increased. In order to solve this problem, we connected the neutral line between two superconducting elements and the center of secondary coils. The two elements were all quenched in the transformer type SFCL with a neutral line. As a result, the power burden of superconducting elements was decreased, so it was efficient for the increase of power capacity of the transformer type SFCL.

  • PDF

Analysis on Hysteresis Characteristics of a Transformer Type Superconducting Fault Current Limiter (변압기형 초전도전류제한기의 히스테리시스 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.164-168
    • /
    • 2010
  • The transformer is expected to be an essential component of a superconducting fault current limiter (SFCL) for both the increase of its voltage ratings and the simultaneous quench due to different critical current between high-$T_C$ superconducting (HTSC) elements comprising the SFCL. However, in order to perform the effective current limiting operation of the SFCL, the design for the SFCL considering the hysteresis characteristics of the iron core is required. In this paper, the influence of the hysteresis characteristics of the iron core comprising the transformer type SFCL on its current limiting characteristics was investigated. Through the comparative analysis on the hysteresis curves due to the ratio of the turn number between the 1st and the 2nd windings of the transformer, the proper design condition for the ratio of the turn number to achieve the effective current limiting operation of the transformer type SFCL could be obtained.

A Study on the Optimal Design of Planar Flyback Transformers suitable for Small-size and Low-profile (소형화 및 슬림형에 적합한 평면 플라이백 변압기의 최적 설계에 관한 연구)

  • Na, Hae-Joong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.828-837
    • /
    • 2020
  • This paper presents the optimal design of planar flyback transformer suitable for small-size and low-profile of AC to DC adapter for 10W tablet. This paper also proposes the injection winding transformer of Hybrid and Drum types capable of the winding method of automatic type and the reduction of transformer size and leakage inductance(Lk) compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the injection winding transformer of Drum type proposed in this paper is constructed in a horizontal laying of its transformer to solve the connection problem of copper plate injection winding on the secondary side of the one of Hybrid type. The primary and secondary windings of the injection winding transformer of Hybrid and Drum types used the conventional winding and the copper plate injection winding, respectively. For the injection winding transformer of Hybrid and Drum types proposed in this paper, the optimal design of planar flyback transformer suitable for small-size and low-profile was carried out using Maxwell 2D and 3D tool.