• Title/Summary/Keyword: Transformation Heat

Search Result 584, Processing Time 0.03 seconds

Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions (어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구)

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF

Transformation Behaviour of High Temperature Thermoelectric $FeSi_2$ (고온열전재료 $FeSi_2$의 변태거동)

  • Eun, Young-Hyo;Min, Byoung-Gue;Lee, Dong-Hi
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.90-98
    • /
    • 1995
  • In the Fe-Si system, a mixture of a($Fe_{2}Si_5$) - and ${\epsilon}$(FeSi)-composition powders was sintered and heat-treated subsequently at various temperatures and time to get thermoelectric ${\beta}$-phase($FeSi_2$) compacts. The different transformational sequences depending on the heat treating temperature were found through the investigation into phase transformation and microstructural development. That is, a rapid eutectoid decomposition of ${\alpha}{\to}{\beta}+Si$ occurred together with a accompanying slow reaction between the dispersed Si formed by above decomposition and the preexisted ${\epsilon}$ phase at temperatures below $830^{\circ}C$. The unreacted Si and the micropores formed due to the density change upon the transformation coarsened as heat treating time elapsed. At temperatures above $880^{\circ}C$, however, transformation was proceeded by a peritectoid reaction of ${\alpha}+{\epsilon}{\to}{\beta}$. It took at least 200min. to achieve 90% volume fracion of transformed ${\beta}$ phase, and the growth of micro-pores was also observed in this transformational sequence with prolonged heat treating time.

  • PDF

A Study on Temperature Measurement for Quenching of Carbon Steel (탄소강 담금질 공정의 온도 측정방법에 대한 고찰)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • To achieve desired microstructure and mechanical property of a manufacturing product, heat treatment process is applied as a secondary process after forging. Especially, quenching process is used for improving strength, hardness, and wear resistance since phase transformation occurs owing to rapid heat transfer from the surface of the specimen. In the present paper, a study on surface temperature measurement for water quenching of eutectoid steel was investigated. In order to determine the temperature history in experiments, three different measuring schemes were used by varying installation techniques of K-type thermocouples. Depending on the measured temperature distribution at the surface of the specimen, convective heat transfer coefficients were numerically determined as a function of temperature by the inverse finite element analysis considering the latent heat generation due to phase transformation. Based on the inversely determined convective heat transfer coefficient, temperature, phase, and hardness distributions in the specimen after water quenching were numerically predicted. By comparing the experimental and computational hardness distribution at three different locations in the specimen, the best temperature measuring scheme was determined. This work clearly demonstrates the effect of temperature measurement on the final mechanical property in terms of hardness distribution.

Study on the Martensitic Transformation Temperature and Morphology in Fe-27%Ni-0.27%C Alloy (Fe-27%Ni-0.27%C 합금의 마르텐사이트 변태온도와 형태에 관한 연구)

  • Shon, In-Jin;Kim, Hwan-Cheol;Kim, Hak-Shin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.198-204
    • /
    • 1996
  • This work was carried out in order to investigate the effect of grain size on martensitic transformation temperature and morphology of Fe-27%Ni-0.27%C alloy. The martensitic transformation temperature was raised with increasing the austenitizing temperature within the range from $750^{\circ}C$ to $1200^{\circ}C$, owing to the grain growth, vacancy concentration. It was observed that the larger was the austenite grain, the higher was the martensitic transformation temperature. The influence of the austenite grain size was similar to that of the austenitizing temperature. The morphology of martensite in Fe-27%Ni-0.27%C alloy changed from lath to lenticular with the variation of grain size. From the above results, it was concluded that the martensitic transformation temperature and morphology was mainly dependent upon the austenite grain size.

  • PDF

Effect of Reverse Transformation on the Microstructure and Retained Austenite Formation of 0.14C-6.SMn Alloy Steel (0.14C-6.5Mn 합금강의 미세조직과 잔류오스테나이트 형성에 미치는 역변태처리의 영향)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • The present study aimed to develop the TRIP(transformation induced plasticity) aided high strength low carbon steel sheets using reverse transformation process. The cold-rolled 0.14C-6.5Mn steel was reverse-transformed by slow heating to intercritical temperature region and air cooling to room temperature. An excellant combination of tensile strength and elongation of $98.3kgf/mm^2$ and 44.4% appears. This combination comes from TRIP phenomena of retained austenite during deformation. The stability of retained austenite Is very Important for the good ductility and it depends on diffusion of carbon and manganese during reverse transformation. The air cooling after holding at intercritical temperature retards the formation of pearlite and provides the carbon enrichment in retained austenite, resulting the increase of elongation in cold-roiled TRIP steel.

  • PDF

Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source

  • Al-Huniti, Naser S.;Alahmad, Sami T.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.27-43
    • /
    • 2017
  • The transient thermo-mechanical behavior of a simply-supported beam made of a functionally graded material (FGM) under the effect of a moving heat source is investigated. The FGM consists of a ceramic part (on the top), which is the hot side of the beam as the heat source motion takes place along this side, and a metal part (in the bottom), which is considered the cold side. Grading is in the transverse direction, with the properties being temperature-dependent. The main steps of the thermo-elastic modeling included deriving the partial differential equations for the temperatures and deflections in time and space, transforming them into ordinary differential equations using Laplace transformation, and finally using the inverse Laplace transformation to find the solutions. The effects of different parameters on the thermo-mechanical behavior of the beam are investigated, such as the convection coefficient and the heat source intensity and speed. The results show that temperatures, and hence the deflections and stresses increase with less heat convection from the beam surface, higher heat source intensity and low speeds.

Effect of Nb Addition on Phase Transformation Behavior during Continuous Cooling in Low Carbon Steels for Recrystallization Control Rolling (재결정제어압연용 저탄소강의 연속냉각 상변태거동에 미치는 Nb 첨가효과)

  • Lee, Sang Woo;Choo, Wung Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.346-354
    • /
    • 2000
  • Effect of Nb addition on the phase transformation behavior was studied through continuous cooling transformation tests after reheating(reheating CCT) and deforming(deforming CCT) the 0.07%C-1.3%Mn-0.015%Ti-(0~0.08)% Nb steels. Transformation temperatures for deforming CCT were lower than those for reheating CCT, and the critical cooling rate for bainite transformation during deforming CCT was lower than that during reheating CCT. These enhanced hardenability for deforming CCT was considered to come from the sufficient solid solution of Nb in austenite during high temperature reheating before deformation. With Nb addition, the phase transformation temperature decreased, the bainite formation was enhanced, and the hardness of steel increased. Furthermore, these phenomena were more remarkable for deforming CCT than for reheating CCT. From the results, Nb-Ti bearing low carbon steel was considered to be a very favorable alloy system with good strength/toughness balance by recrystallization control rolling process.

  • PDF

Effect of Heat Treatment on the Martensitic Transformation and Tensile Deformation Behavior in Ti-Ni-B shape Memory Alloy (Ti-Ni-B 형상기억합금의 마르텐사이트변태 및 인장변형거동에 미치는 열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Ahn, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The purpose of this study is to investigate the effect of heat treatments on the martensite transformation and tensile deformation behavior in Ti-Ni-B alloys with various boron concentration. Three types of heat treatment are given to the specimens; i) solution treatment ii) aging iii) thermo-mechanical treatment. In solution treated specimens. R-phase transition which is related to abnormal increase of electrical resistance prior to martensitic transformation has been formed at a boron content of 0.2at % and the $M_s$ temperature has been decreased with the increasing of boron content. However. It has not been affected by aging, while that of thermo-mechanically treated specimens has been remarkably increased in the vicinity of recrystallization temperature. The thermo-mechanically treated specimen has showed a good thermal fatigue characteristics, shape memory effect and superelasticity in comparison with the solution treated specimen.

  • PDF

Analysis of Meat transfer and Residual Stress on the Weld Zone Using FEM (FEM을 이용한 용접부의 열전달 및 잔류응력 해석)

  • 김일수;박창언;김학형;정영재
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.310-313
    • /
    • 1999
  • This paper represents to develop a computer software system which is capable to analyze the phase transformation of high strength steel(BV-AH32) and to predict heat transfer, residual stress due to phase transformation during Gas Metal Arc(GMA) welding. The developed model was taken into account temperature dependent of young's modules, coefficient of thermal expansion and yield stress as well as the double ellipsoidal heat distribution by the moving arc. The results showed that the longitudinal and transverse residual stresses calculated by the coupled analysis of heat transfer, residual stress and phase transformation are in good agreement with the experimental data. In addition, the temperature distribution as well as longitudinal and transverse residual stresses of weldment were determined at the 1-pass and 2-pass of welding.

  • PDF

Effect of the Cooling Rates on the Corrosion Resistance and Phase Transformation of 14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee-Yong;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Martensitic stainless steel is used when mechanical properties such as high tensile strength and hardness are required. Medium carbon-contained martensitic stainless steel which contains more than 0.2 wt% of carbon should be heat-treated and quenched at the temperature where undissolved carbides are totally dissolved into the matrix. In particular, the dissolution and reprecipitation behaviors of various forms of carbides are affected by such parameters as heating rate, heating temperature, duration time and cooling rate. This study is to investigate the effects of heat treatment parameters of 14Cr-3Mo martensitic stainless on corrosion resistance and phase transformation in relation to the dissolution and reprecipitation of carbides.