• Title/Summary/Keyword: Transferring pipe

Search Result 14, Processing Time 0.017 seconds

A Study on the Protecting Wall for Transferring Pipe of Waste Using Cast Basalt Tube (용융주조 현무암 튜브를 이용한 생활폐기물 이송관로의 보호벽에 관한 연구)

  • Wang, Jee-Seok;Kim, Jong-Do;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.816-824
    • /
    • 2010
  • The forces applying to an object in the transferring pipe of waste are analyzed and the equation of motion is established in this paper. It is shown that the equation of motion becomes the 1st order non-linear differential equation. Using its general solution, the velocity of the object in the transferring pipe of waste can be expressed in the explicit form. Noting that the velocity of object is impact velocity to the elbow or curved part of the transferring pipe of waste, the kinetic energy of the object can be calculated and the necessary impact strength of inner wall is obtained. The velocity of object is also calculated and presented in the graphic forms with the condition of air velocity 30m/sec. The impact test of cast basalt tube is carried out by the free fall of a weight and the test results show that the impact strength of the cast basalt tube is sufficient to apply to protecting inner wall of the transferring pipe of waste.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

A Study on the progressive die design and making of gas boiler exhaust pipe (가스보일러 연소배기관 프로그레시브금형의 설계와 제작에 관한 연구)

  • Lee, Chun-Kyu;Kim, Young-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4111-4116
    • /
    • 2013
  • The progressive die producing continuously while transferring in order a multiple process is processing law that it is efficient and quality is excellent. In this study the position of precision secured that it occurred when be welded exhaust efficiency of gas boiler combustion exhaust pipe and the exhaust pipe which is cause of incomplete combustion for the purpose of productivity increase. it add burring to a product form and progressive die make die don't disassemble and it be able to exchange burring punch the position of precision and productivity by progressive die is able to improve.

Prediction of End Bearing Capacity for Pre-Bored Steel Pipe Piles Using Instrumented Spt Rods (SPT 에너지효율 측정 롯드를 이용한 매입말뚝의 선단지지력 예측)

  • Nam, Moon S.;Park, Young-Ho;Park, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.105-111
    • /
    • 2013
  • The standard penetration test (SPT) has been widely used because of its usability, economy, and many correlations with soil properties among other factors. In SPT, hammer energy is an important factor to evaluate and calibrate N values. To measure hammer energy, an instrumented SPT rod was developed considering that stress waves transferring on rods during SPT driving are the same as stress waves transferring on piles due to pile driving. Using this idea, an instrumented SPT rod with a pile driving analyzer was applied as a pile capacity prediction tool in this study. In order to evaluate this method, SPT and dynamic cone tests with the instrumented SPT rod were conducted and also 2 pile load tests were performed on pre-bored steel pipe piles at the same test site. End bearings were predicted by CAPWAP analysis on force and velocity waves from dynamic cone penetration tests and SPT. Comparing these predicted end bearings with static pile load tests, a new prediction method of the end bearing capacity using the instrumented SPT rod was proposed.

Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area (용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석)

  • Yoon, Min Soo;Song, Ki O;Lee, Jae Min;Ha, Seung Woo;Cho, Sun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.

Shear Performance Evaluation of Cast-in Specialty Inserts in Cracked Concrete according to Cyclic Loading Patterns (반복하중 패턴에 따른 균열 콘크리트에 매입된 선설치 인서트 앵커의 전단성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, a novel cast-in specialty insert was developed in Korea as an anchor for lightweight pipe supports, including fire-protection pipes. As these pipe supports and anchors play a critical role in transferring loads of fire-protection pipes to structural members, it is crucial to evaluate their seismic performance before applying the newly developed insert. In this study, the seismic shear performance of the insert anchors was evaluated through cyclic loading tests based on the loading protocols of ACI 355.2 and FEMA 461. Initially, five monotonic loading tests were conducted on the insert anchors in cracked concrete, followed by cyclic loading tests based on the monotonic test results. The findings revealed that the insert anchors exhibited negligible decrease in shear strength even after cyclic loading. Furthermore, a comparison of the maximum load and displacement of the insert anchors obtained under the loading protocols of ACI 355.2 and FEMA 461 was performed to investigate the applicability of the FEMA 461 loading protocol for anchor performance evaluation.

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

Suggestion of Elementary School Information Security Education Elements Based on Pipe Game to Understand the Principle of Data De-Identification (데이터 비식별화 원리의 이해를 위한 파이프 게임 기반 초등 정보보호 교육 요소 제언)

  • Kim, Jinsu;Kim, Sangchoon;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.1063-1070
    • /
    • 2021
  • The development of IT technology emphasizes the importance of training IT professionals, and the need for education for elementary and secondary education as well as adult education for training technical talent is expanding. In particular, information curriculum will be added as an essential course from the 2015 revised curriculum, and IT technology will be understood in the curriculum for elementary and secondary schools and will be required to develop applicability to solve problems based on understanding. Currently, research is under way to integrate IT technologies to provide new services, and if the use of personal information is required in the process, thorough security for the leakage of personal information is pre-empted. It also prevents the identification of personal information in the process of transmitting data to the outside world. In this paper, we propose a training method for elementary school subjects to understand the non-identification process that occurs in the process of transferring data using pipe games so that they can understand the principles of non-identification and develop applications to solve real-life problems.

Application of the electrodynamic wheel as a driving principle of noncontact transfer system (비접촉 이송 시스템의 구동원으로서 동전기 휠의 응용)

  • Jung, Kwang Suk
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • The rotating electrodynamic wheels can produce three-axial forces on the conductive target. The forces are linked strongly each other, and their magnitudes depend on the rotating speed of the wheel. However, the wheels can be used effectively as an actuating principle for transfer system of conductive material. The conductive material is a pipe with a constant cross-section or a conductive plate. In this paper, a few applications using the electrodynamic wheels as transferring means are introduced including the full description of the real hardware implementation.

A Development of the Starting Motor for Packaged Power Systems (이동식 발전설비용 시동전동기 개발)

  • Kim, Jong-Su;Kim, Seung-Hwan;Oh, Sae-Gin;Kim, Yong-Geun;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.172-178
    • /
    • 2012
  • Packaged power systems are very convenient for transferring and installing, and can supply electric power steadily for the areas which have a great difficulty in drawing power line from the outside. Then, the equipments have been widely used in such mountain areas and the back of beyond. Generally, compressed air has been employed to start the dynamo-engines for P.P.S. However, these systems necessitate air compressors, air tanks, air starting motors and pipe lines for transferring compressed air etc. Recently, starting systems which have only batteries and series DC motors as whole automobiles have been applied due to their simplicity and economy. In this paper, developed new starting motor for the P.P.S. And we achieved the better results from performance tests.: Output power, torque and speed.