• Title/Summary/Keyword: Transfer orbit

Search Result 154, Processing Time 0.025 seconds

OPTIMUM AKN BURN PLANNING FOR ORBITAL TRANSFER OF KOREASAT (무궁화 위성의 궤도전이를 위한 최적 원지점 점화 계획)

  • 송우영;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.296-307
    • /
    • 1994
  • Using X-Window system (Motif Graphic User Interface), the AKM (Apogee Kick Motor) firing software for Koreasat which will be launched in 1995 has been developed to transfer the spacecraft from its transfer orbit, provided by the DeltaII launch vehicle, into a nearly geostationary drift orbit. The AKM firing software runs in one of two modes. In mission analysis mode, using a fixed magnitude impulsive velocity change, it provides the necessary data for planning the burn parameters. In insert mode, it uses the orbit propagator function to integrate the spacecraft state through the AKM burn. In this case, an AKM thrust profile and specific impulse are applied to the necessary data for planning the burn parameters to obtain the best possible drift orbit. The apogee burn planning simulation for orbital transfer of Koreasat has been performed using the AKM firing software. And the result of this simulation has been analyzed.

  • PDF

Spacecraft Formation Reconfiguration using Impulsive Control Input

  • Bae, Jonghee;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.183-192
    • /
    • 2013
  • This paper presents formation reconfiguration using impulsive control input for spacecraft formation flying. Spacecraft in a formation should change the formation size and/or geometry according to the mission requirements and space environment. To modify the formation radius and geometry with respect to the leader spacecraft, the follower spacecraft generates additional control inputs; the two impulsive control inputs are general control type of the spacecraft system. For the impulsive control input, Lambert's problem is modified to construct the transfer orbit in relative motion, given two position vectors at the initial and final time. Moreover, the numerical simulation results show the transfer trajectories to resize the formation radius in the radial/along-track plane formation and in the along-track/cross-track plane formation. In addition, the maneuver characteristics are described by comparing the differential orbital elements between the reference orbit and transfer orbit in the radial/along-track plane formation and along-track/cross-track plane formation.

Minimum-Energy Spacecraft Intercept on Non-coplanar Elliptical Orbits Using Genetic Algorithms

  • Oghim, Snyoll;Lee, Chang-Yull;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.729-739
    • /
    • 2017
  • The objective of this study was to optimize minimum-energy impulsive spacecraft intercept using genetic algorithms. A mathematical model was established on two-body system based on f and g solution and universal variable to address spacecraft intercept problem for non-coplanar elliptical orbits. This nonlinear problem includes many local optima due to discontinuity and strong nonlinearity. In addition, since it does not provide a closed-form solution, it must be solved using a numerical method. Therefore, the initial guess is that a very sensitive factor is needed to obtain globally optimal values. Genetic algorithms are effective for solving these kinds of optimization problems due to inherent properties of random search algorithms. The main goal of this paper was to find minimum energy solution for orbit transfer problem. The numerical solution using initial values evaluated by the genetic algorithm matched with results of Hohmann transfer. Such optimal solution for unrestricted arbitrary elliptic orbits using universal variables provides flexibility to solve orbit transfer problems.

Geostationary Transfer Orbit Mission Analysis Software Development

  • Kim, Bang-Yeop
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.1-26.1
    • /
    • 2008
  • The Korean first geostationary meteorological satellite, COMS, will be launched during second half of 2009. For the next meteorological geostationary satellite mission, KARI is now preparing the development process and tools. As one of the endeavor, a software tool is being developed for the analysis and design of geostationary transfer orbit. Generally, these kind of tools should be able to do various analysis works like apogee burn planning, dispersion analysis, ground visibility analysis, and launch window analysis etc. In this presentation, a brief introduction about a design process and analysis software tool development. And simulated calculation results are provided for the geostationary transfer orbit. These software can be used for the next geostationary satellite mission design and development.

  • PDF

COMS BIPROPELLANT PROPULSION SYSTEM (COMS 특별세션)

  • Han, Cho-Young;Park, Eung-Sik;Baek, Myung-Jin;Lee, Ho-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.41-44
    • /
    • 2007
  • Korea Aerospace Research Institute (KARI) has jointly developed a bipropellant propulsion system for Communication, Ocean and Meteorological Satellite (COMS) with EADS Astrium in UK. The technology relevant to a bipropellant propulsion system is quite new one in Korea, which is transferred for the first time, with development of COMS propulsion system. It hasn't ever attempted before, and hasn't got any general idea itself as well, in Korea. The COMS Chemical Propulsion System (CPS) is designed to perform both the orbital injection function, to take the spacecraft from transfer orbit to Geostationary Earth Orbit (GEO), and all on-station propulsive functions throughout the lifetime of the satellite. All station keeping manoeuvres are performed using the CPS. The design, manufacture and testing of COMS CPS are addressed in this paper. Feasibility of COMS CPS applicable to the other advanced mission is investigated as well.

  • PDF

Initial On-Orbit Modulation Transfer Function Performance Analysis for Geostationary Ocean Color Imager

  • Oh, Eun-Song;Kim, Sug-Whan;Cho, Seong-Ick;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • The world's first geostationary ocean color imager (GOCI) is a three-mirror anastigmat optical system 140 mm in diameter. Designed for 500 m ground sampling distance, this paper deals with on-orbit modulation transfer function (MTF)measurement and analysis for GOCI. First, the knife-edge and point source methods were applied to the 8th band (865 nm) image measured April 5th, 2011. The target details used are the coastlines of the Korean peninsula and of Japan, and an island 400 meters in diameter. The resulting MTFs are 0.35 and 0.34 for the Korean East Coastline and Japanese West Coastline edge targets, respectively, and 0.38 for the island target. The daily and seasonal MTF variations at the Nyquist frequency were also checked, and the result is $0.32{\pm}0.04$ on average. From these results, we confirm that the GOCI on-orbit MTF performance satisfies the design requirements of 0.32 for 865 nm wavelength.

Configuration and Characteristics of Fine Sun Sensor for Satellite (위성용 고정밀 태양센서 구성 및 특성)

  • Kim, Yong-Bok;Pank, Keun-Joo;Choi, Hong-Taek
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.87-93
    • /
    • 2011
  • FSSA(Fine Sun Sensor Assembly) is the important sensor for satellite attitude control. FSSA measures the direction of the sun's rays and determines whether the satellite is in the eclipse or not. FSSA for GEO Satellite is also used to acquire the attitude error information in the attitude control reference frame and acquire the Sun direction during transfer orbit or mission Process. This paper shows the configuration of Fine Sun Sensor for LEO and GEO Satellite and their principle of operation that angle measurement is obtained by using the transfer function which is the ratio of the difference between output currents of Solar Cell to the sum of all output currents.

Observational Arc-Length Effect on Orbit Determination for Korea Pathfinder Lunar Orbiter in the Earth-Moon Transfer Phase Using a Sequential Estimation

  • Kim, Young-Rok;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.293-306
    • /
    • 2019
  • In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch-PM1, PM1-PM3, and PM3-LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.

Numerical simulation of a hall thruster for orbit transfer and correction of small satellites (소형위성의 궤도 천이 및 보정을 위한 홀 방식 전기추력기의 수치모사)

  • Seon Jong-Ho;Lee Jong-Sub;Lim Yu-Bong;Choe Won-Ho;Lee Hae-June
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.66-69
    • /
    • 2006
  • A two-dimensional Particle-In-Cell (PIC) simulation of a Hall thruster is presented. The thruster is being developed for orbit transfer and correction of a small satellite. Preliminary investigation of the simulation result finds well separated acceleration and ionization layers. The simulation further shows that collisional ionization of the xenon neutrals allows sufficient acceleration of the ionized plasmas that is adequate for the intended correction and transfer of small satellite orbits. Anticipated performance of the thruster based upon the present results will be calculated.

  • PDF

Aeroassisted Orbital Maneuvering in a Worst-Case Atmosphere (최악의 대기 조건 하의 공기조력 비행선 운전)

  • Lee, Byoungsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.936-941
    • /
    • 2000
  • Advanced space transportation systems, such as the National Aerospace Plane or an Orbital Transfer Vehicle, have atmospheric maneuvering capabilities. For such vehicles the use of aeroassisted orbital transfer from a high Earth orbit to a low Earth orbit, with unpowered flight in the atmosphere, has the potential for significant fuel savings compared to exoatmospheric Hohmann transfer. However, to exploit the fuel savings that can be achieved by using the Earths atmosphere to reduce the vehicles energy, a guidance law is required, and it must be able to handle large unpredictable fluctuations in atmospheric density, on the order of ${\pm}$50% relative to the 1962 US Standard Atmosphere. In this paper aeroassisted orbital transfer is considered as a differential game, with Nature controlling the atmosphere density to yield a worst case (min-max fuel required) atmosphere, from which the guaranteed playable set boundary are achieved. Inside the playable set, it is guaranteed that the vehicle achieves the optimal atmospheric exit condition for the minimum fuel consumption regardless of the atmospheric density variations.

  • PDF