• Title/Summary/Keyword: Transfer molding

Search Result 209, Processing Time 0.023 seconds

A study on the effects of polymer core gate sizes on thickness shrinkage rate (폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구)

  • Choi, Han-Sol;Jeong, Eui-Chul;Park, Jun-Soo;Kim, Mi-Ae;Chae, Bo-Hye;Kim, Sang-Yun;Kim, Yong-Dae;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.

Development of simulation method for heating line optimization of E-Mold by using commercial CAE softwares (전산모사 프로그램을 이용한 E-MOLD의 Heating Line 배치의 최적화 설계에 관한 연구)

  • Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1754-1759
    • /
    • 2008
  • To produce plastic parts that have fine pattern through conventional injection molding, a lot of difficulties follow. Therefore, rapid heating and cooling methods are good candidates for manufacturing injection-molded parts with micro/nano patterns. In this study, we adopted the E-Mold patent technology. The mold for E-Mold technology has a separate heated core with micro heaters. It is very important to optimize the lay-out of the heaters in heated core because it influences both control and distribution of mold temperature. We developed a optimization method of heating line lay-out by using commercial softwares and compared the output with the experimental results. We used Pro-Engineer Wildfire 2.0 for the mold design, ICEMCFD for mesh generation, and FLUENT for heat transfer simulation. The simulation results showed the temperature profile from $60^{\circ}C$ to $120^{\circ}C$ or $180^{\circ}C$ during heating and cooling process which were compared with the injection molding experiments. We concluded that the simulation could well explain the experimental results. It was shown that the E-Mold optimization design for heater lay-out could be available through the simulation.

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

Process Design and Experimental Verification of Airbag Inflator Cap Forming (에어백 인플레이터 캡 성형 공정 개발 및 검증)

  • Lee, D.K.;Lee, M.S.;Park, J.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.201-210
    • /
    • 2018
  • An airbag is an essential automotive component used in all kinds of vehicles such as an internal combustion engine and an electric motor vehicle and is used to minimize the damage of an occupant in the event of an accident. Airbag-related parts are being monopolized by a small number of foreign companies around the world. In this situation, it is necessary to develop and research the airbag-related part molding technology for expansion of the domestic airbag-related market and corporate export. As a part of this research, we have developed a mold for airbag inflator cap. The development consists of three steps which are the design of components, analysis of the design and verification of it. In the case of the design, the transfer type mold was designed for the multi-cylindrical shaped feature. Analysis was then conducted on the design. By examining the results of analysis, changing features and numbers of punches and dies were added in the analysis and repeatedly analyzed. After the addition, proper dimensions from the analysis were achieved, and prototypes were practically produced and verified. In the case of prototype verification, Pressurizing Burst Test was conducted on the existing products and the prototype. By comparing the results of the test, the possibility of replacing the existing product of the airbag inflator cap is presented in this paper.

Novel thermoplastic toughening agents in epoxy matrix for vacuum infusion process manufactured composites

  • Bae, Jin-Seok;Bae, Jihye;Woo, Heeju;Lee, Bumjae;Jeong, Euigyung
    • Carbon letters
    • /
    • v.25
    • /
    • pp.43-49
    • /
    • 2018
  • This study suggests the novel thermoplastic toughening agent, which can be applied in the monomer forms without increasing the viscosity of the epoxy resin and polymerized during the resin curing. The diazide (p-BAB) and dialkyne (SPB) compounds are synthesized and mixed with the epoxy resin and the carbon fiber reinforced epoxy composites are prepared using vacuum infusion process (VIP). Then, flexural and drop weight tests are performed to evaluate the improvement in the toughness of the prepared composites to investigate the potential of the novel toughening agent. When 10 phr of p-BAB and SPB is added, the flexural properties are improved, maintaining the modulus as well as the toughness is improved. Even with a small amount of polytriazolesulfone polymerized, due to the filtering effect of the solid SPB by the layered carbon fabrics during the VIP, the toughening and strengthening effect were observed from the novel toughening agent, which could be added in monomer forms, p-BAB and SPB. This suggests that the novel toughening agent has a potential to be used for the composites prepared from viscosity sensitive process, such as resin transfer molding and VIP.

Investigation on Mechanical Properties of Flax/Vinyl Ester Natural Fiber Composite (아마/비닐 에스테르 자연 섬유 복합재료의 기계적 특성 분석 연구)

  • Park, Hyunbum;Kong, Changduk;Lee, Jeonghwan;Kim, Ingwon;Lee, Hoyeon
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, an investigation on mechanical properties of flax/vinyl ester natural fiber composite was performed as a precedent study on the design of eco-friendly structure using flax/vinyl ester composite. Vacuum Assisted Resin Transfer Molding(VARTM) manufacturing method was adopted for manufacturing the flax fiber composite specimen. The mechanical properties of the manufactured flax composites were compared with flax composite data cited from some references. Based on this, the experimental data showed that the flax/vinyl ester composite has some advantages when it is applied to environment-friendly structure.

Flow Analysis and Process Conditions Optimization in a Cavity during Semiconductor Chip Encapsulation (반도체 칩 캡슐화성형 유동해석 및 성형조건 최적화에 관한 연구)

  • 허용정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.67-72
    • /
    • 2001
  • An Effort has been made to more accurately analyze the flow in the chip cavity, particularly to model the flow through the openings in the leadframe and correctly treat the thermal boundary condition at the leadframe. The theoretical analysis of the flow has been done by using the Hele-Shaw approximation in each cavity separated by a leadframe. The cross-flow through the openings in the leadframe has been incorporated into the Hele-Shaw formulation as a mass source term. The optimization program based on the complex method integrated with flow analysis program has been successfully used to obtain the optimal filling conditions to avoid short shot.

  • PDF

Design of the Thermally Conductive Mould to Improve Cooling Characteristics of Injection Mould for a Mouse (마우스 사출성형금형의 냉각 특성 향상을 위한 열전도성 금형 설계)

  • Ahn, Dong-Gyu;Kim, Hyun-Woo;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.201-209
    • /
    • 2009
  • The objective of present research work is to design the heat conductive mould to improve cooling characteristics of the injection mould for a mouse. In order to obtain the high cooling rate of the mould, a heat conductive mould with three different materials was designed. The materials of the base structure, the mid-layer and the molding part of the heat conductive mould were chosen as Cu-Ni alloy (Ampcoloy 940) to improve the heat conductivity of the mould, Ni-Cu alloy (Monel 400) to reduce a thermal stress, injection tool steel (P21), respectively. Through the three-dimensional transient heat transfer analysis and the thermal stress analysis, the effects of the geometrical arrangement of each material on the cooling characteristics and the thermal stress distribution were examined. From the results of the analyses, a proper design of the thermal conductive mould was obtained.

Fabrication of Polymeric Optical Fiber Array (정밀 고분자 광섬유 어레이 제작 연구)

  • Cho, Sang-Uk;Jeong, Myung-Yung;Kim, Chang-Seok;Ahn, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.82-88
    • /
    • 2007
  • This work is to fabricate a precise optical fiber array using polymer composite for optical interconnection. Optical fiber array has to satisfy low optical loss requirement less than 0.4 dB according to temperature change. For this purpose, design criteria for an optical fiber array was derived. The coefficient of thermal expansion of silica particulate epoxy composites was affected by volume fraction of silica particles. And also, elastic modulus of silica particulate epoxy composites was affected by volume fraction of silica particles. To obtain the coefficients of thermal expansion below $10{\times}10E-6/^{\circ}C$ and elastic modulus more than 20 GPa , we chose the volume fraction more than 76%. Using silica particulate epoxy composites with the volume fraction 76%, 8-channel optical fiber array with dimensional tolerances below $1\;{\mu}m$ was manufactured by transfer molding technique using dies with the uniquely-designed core pin and precisely-machined zirconia ceramic V block. These optical fiber arrays showed optical loss variations within 0.4 dB under thermal cycling test and high temperature test.

Development of Microneedles for Cardiovascular Drug Delivery (심혈관 질환치료용 약물전달을 위한 위한 마이크로 니들 개발)

  • Ryu, Won-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.122.1-122.1
    • /
    • 2016
  • 관상동맥 경화나 말초 혈관 동맥 경화 등이 발생한 경우 스텐트를 이용한 치료나 혈관 접합술(bypass grafting surgery)에 의한 치료를 하게 된다. 그러나 많은 경우 치료 부위에 발생한 혈관 조직에의 손상으로 인해 재협착(restenosis)이나 폐색(occlusion)이 일어나 환자의 생명을 위협하는 치명적인 결과를 유발하는 경우가 종종 발생한다. 이러한 재협착이나 폐색은 혈관민무니근세포(smooth muscle cells)의 이상성장(abnormal growth) 때문인데, 이를 억제하기 위한 다양한 약물이 개발되어 왔으나 치료 대상 부위에 높은 효율로 2~3 주간의 기간 동안 약물 전달하기가 어려운 실정이다. 최근 혈관접합 부위 (anastomosis site)등에 적용할 수 있는 메쉬나 실린더 형상의 약물전달 디바이스들이 개발되어 왔으나 약물 전달의 효율 등에서 더 개선이 절실히 필요한 실정이다. 본 발표에서는 혈관 외벽에 장착되어 혈관 중간막 (tunica media) 조직으로의 약물 전달 효율을 높이기 위해 마이크로니들(microneedles)을 이용한 디바이스들을 개발하고 약물 전달 성능과 치료효과를 소개하고자 한다. 열인장 공정 (thermal drawing)과 트랜스포 몰딩(transfer molding) 등의 마이크로 니들 제작공정을 설명하고 이를 바탕으로 제작된 커프(cuff) 형 및 유연 메쉬 (flexible mesh) 형의 디바이스 개발 과정을 소개하고자 한다. 특히, 이 디바이스들의 동물실험을 통한 약물 전달 효율의 향상 및 치료 효과의 증대에 대한 논의를 하고자 한다.

  • PDF