• Title/Summary/Keyword: Transfer factor (TF)

Search Result 13, Processing Time 0.018 seconds

Effective Detective Quantum Efficiency (eDQE) Evaluation for the Influence of Focal Spot Size and Magnification on the Digital Radiography System (X-선관 초점 크기와 확대도에 따른 디지털 일반촬영 시스템의 유효검출양자효율 평가)

  • Kim, Ye-Seul;Park, Hye-Suk;Park, Su-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The magnification technique has recently become popular in bone radiography, mammography and other diagnostic examination. However, because of the finite size of X-ray focal spot, the magnification influences various imaging properties with resolution, noise and contrast. The purpose of study is to investigate the influence of magnification and focal spot size on digital imaging system using eDQE (effective detective quantum efficiency). Effective DQE is a metric reflecting overall system response including focal spot blur, magnification, scatter and grid response. The adult chest phantom employed in the Food and Drug Administration (FDA) was used to derive eDQE from eMTF (effective modulation transfer function), eNPS (effective noise power spectrum), scatter fraction and transmission fraction. According to results, spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.76, 2.21, 1.78, 1.49 and 1.26 lp/mm respectively using small focal spot. The spatial frequencies that eMTF is 10% with the magnification factor of 1.2, 1.4, 1.6, 1.8 and 2.0 are 2.21, 1.66, 1.25, 0.93 and 0.73 lp/mm respectively using large focal spot. The eMTFs and eDQEs decreases with increasing magnification factor. Although there are no significant differences with focal spot size on eDQE (0), the eDQEs drops more sharply with large focal spot than small focal spot. The magnification imaging can enlarge the small size lesion and improve the contrast due to decrease of effective noise and scatter with air-gap effect. The enlargement of the image size can be helpful for visual detection of small image. However, focal spot blurring caused by finite size of focal spot shows more significant impact on spatial resolution than the improvement of other metrics resulted by magnification effect. Based on these results, appropriate magnification factor and focal spot size should be established to perform magnification imaging with digital radiography system.

Influence of Soil pH, Total and Mobile Contents on Copper and Zinc Uptake by Lettuce Grown in Plastic Film Houses (시설재배지 토양 pH와 전함량 및 이동태 함량이 상추의 구리와 아연 흡수에 미치는 영향)

  • Kim, Rog-Young;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1042-1047
    • /
    • 2011
  • Copper and Zinc are essential trace elements for all living organisms. When presenting in excess amount in soils, however they can be toxic to plants. In order to examine the transfer of Cu and Zn from soils to plants and to predict their contents in plants using soil factors, we investigated total and mobile contents of Cu and Zn in soils and their uptake by lettuce (Lactuca sativa L.) in plastic film houses. Total Cu and Zn contents in soils were $17.5{\sim}65.9mg\;kg^{-1}$ (mean: $39.3mg\;kg^{-1}$) and $63.2{\sim}200mg\;kg^{-1}$ (mean: $137mg\;kg^{-1}$), respectively. Mobile Cu and Zn contents in soils were $(0.04){\sim}0.55mg\;kg^{-1}$ (mean: $0.18mg\;kg^{-1}$) and $(0.05){\sim}2.62mg\;kg^{-1}$ (mean: $0.47mg\;kg^{-1}$), respectively. Soil pH ranged from 5.4 to 7.3 and OM from 24.1 to $59.9g\;kg^{-1}$. Mean Cu contents in leaves and roots of lettuce were 9.20 and $17.2mg\;kg^{-1}$, respectively which showed that Cu was accumulated mainly in root parts of lettuce and not easily transported to leaves. In contrast, Zn was fairly evenly distributed in leaves and roots with mean values of 54.5 and $56.7mg\;kg^{-1}$, indicating relative high mobility of Zn in lettuce. Transfer factors of Cu and Zn from soil total contents to roots and leaves of lettuce ($TFS_tR$ and $TFS_tL$) were between 0.1 and 1, while transfer factors from soil mobile contents to roots and leaves ($TFS_mR$ and $TFS_mL$) were between 10 and 1000. Transfer factors of Zn were higher than those of Cu, showing Zn was more easily absorbed by plants than Cu. Cu and Zn uptake was stronger influenced by soil pH and mobile contents than total contents and OM and could be significantly described by multiple regression equations including soil pH and soil mobile contents as variables.

Availability of Heavy Metals in Soil and Their Translocation to Water Dropwort (Oenanthe javanica DC.) Cultivated near Industrial Complex (토양내 중금속 유효도와 미나리중의 흡수이행성 평가)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Shin, Joung-Du;Kim, Jin-Ho;Lee, Jeong-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • This experiment was conducted to investigate heavy metal transition and bioavailability from soil to the edible pare of water dropwort near industrial complex. The soils were collected from the paddies cultivating water dropwort stream sediments, and background soils near industrial complex. The pH values, organic matter, Av. $P_2O_5$, Ex. Ca content of paddy soils were higher than those measured for nor-contaminated paddy fields in 2003. The contents of Cd and Cu was higher than those of standard level for soil contamination by Soil Environmental Conservation Act in Korea. The pollution index in stream sediments were higher than those of paddies cultivating water dropwort. The geoaccumulation index of heavy metals in paddy soils and stream sediment were in the order Cu>Cd>Ni>Zn>Pb. The rates of 0.1N-HCl extractable heavy metals to total contents in soils were in the order Cd>Cu>Zn>Ni>Pb. In case of Cd and Ni in paddy soils near industrial complex, 0.1N-HCl extractable heavy metals and total content were highly correlated with each other. Heavy metal contents in mot parts were higher than those in top pare of water dropwort. The Zn and Cu transfer factor from soil to the top pare of water dropwort were higher than those of other heavy metals. The bioavailability of water dropwort varied considerably between the different parts and heavy metals. Cd, Cu and Ni contents in water dropwort were correlated with each elements in paddy soils.