• Title/Summary/Keyword: Transfer Learning

Search Result 715, Processing Time 0.033 seconds

A Study Comparing the Effects of Types of Relative Frequency and Delay Internal of Knowledge of Results on Motor Learning (결과에 대한 지식의 상대적 빈도와 지연간격 유형이 운동학습에 미치는 영향 비교)

  • Kim, Dae-Gyun;Cha, Seung-Kyu;Kim, Bum-Gyu;An, Soo-Kyung;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.4 no.1
    • /
    • pp.48-62
    • /
    • 1997
  • Several studies have evaluated the effects of types of relative frequency and delay interval of knowledge of results(KR) on motor skill learning independently. The purpose of this study was to determine more effective types of KR relative frequency and KR delay interval for motor learning. Forty-six healthy subjects (15 female, 31 male) with no previous experience with this experiment participated. The subjects ranged in age from 20 to 29 years (mean=23.9, SD=0.474). All subjects were assigned to one of four groups: a high-instant group, a high-delay group, a low-instant group, and a low-delay group. During the acquisition phase, subjects practiced movements to a target (400 mm) with either a high (83%) or low (33%) KR relative frequency, and with either an instantaneous or delayed (after 8s) KR. Four groups were evaluated on retention (after 3min and 24hr) and transfer (450 mm) tests. The major findings were as follows: (1) there were no between-group differences in acquisition and short-term retention (p>0.05, (2) a low (33%) KR relative frequency during practice was as effective for learning as measured by both long-tenn retention and transfer tests, compared with high (83%) KR practice conditions (p<0.05), (3) delayed (8s) KR enhanced learning as measured by both long-term retention and transfer tests, compared with instantaneous KR practice conditions (p<0.05), and (4) there were no interactions between KR relative frequency and KR delay interval during acquisition, retention, and transfer phases. The results suggest that relatively less frequent and delayed KR are more effective types for motor learning than more frequent and instantaneous KR.

  • PDF

The Verification of the Transfer Learning-based Automatic Post Editing Model (전이학습 기반 기계번역 사후교정 모델 검증)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.27-35
    • /
    • 2021
  • Automatic post editing is a research field that aims to automatically correct errors in machine translation results. This research is mainly being focus on high resource language pairs, such as English-German. Recent APE studies are mainly adopting transfer learning based research, where pre-training language models, or translation models generated through self-supervised learning methodologies are utilized. While translation based APE model shows superior performance in recent researches, as such researches are conducted on the high resource languages, the same perspective cannot be directly applied to the low resource languages. In this work, we apply two transfer learning strategies to Korean-English APE studies and show that transfer learning with translation model can significantly improves APE performance.

Prediction of Rheological Properties of Asphalt Binders Through Transfer Learning of EfficientNet (EfficientNet의 전이학습을 통한 아스팔트 바인더의 레올로지적 특성 예측)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Asphalt, widely used for road pavement, has different required physical properties depending on the environment to which the road is exposed. Therefore, it is essential to maximize the life of asphalt roads by evaluating the physical properties of asphalt according to additives and selecting an appropriate formulation considering road traffic and climatic environment. Dynamic shear rheometer(DSR) test is mainly used to measure resistance to rutting among various physical properties of asphalt. However, the DSR test has limitations in that the results are different depending on the experimental setting and can only be measured within a specific temperature range. Therefore, in this study, to overcome the limitations of the DSR test, the rheological characteristics were predicted by learning the images collected from atomic force microscopy. Images and rheology properties were trained through EfficientNet, one of the deep learning architectures, and transfer learning was used to overcome the limitation of the deep learning model, which require many data. The trained model predicted the rheological properties of the asphalt binder with high accuracy even though different types of additives were used. In particular, it was possible to train faster than when transfer learning was not used.

Research on the Efficiency of Classification of Traffic Signs Using Transfer Learning (전수 학습을 이용한 도로교통표지 데이터 분류 효율성 향상 연구)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.119-127
    • /
    • 2019
  • In this study, we investigated the application of deep learning to the manufacturing process of traffic and road signs which are constituting the road layer in map production with 1 / 1,000 digital topographic map. Automated classification of road traffic sign images was carried out through construction of training data for images acquired by using transfer learning which is used in image classification of deep learning. As a result of the analysis, the signs of attention, regulation, direction and assistance were irregular due to various factors such as the quality of the photographed images and sign shape, but in the case of the guide sign, the accuracy was higher than 97%. In the digital mapping, it is expected that the automatic image classification method using transfer learning will increase the utilization in data acquisition and classification of various layers including traffic safety signs.

Image-Based Automatic Detection of Construction Helmets Using R-FCN and Transfer Learning (R-FCN과 Transfer Learning 기법을 이용한 영상기반 건설 안전모 자동 탐지)

  • Park, Sangyoon;Yoon, Sanghyun;Heo, Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.399-407
    • /
    • 2019
  • In Korea, the construction industry has been known to have the highest risk of safety accidents compared to other industries. Therefore, in order to improve safety in the construction industry, several researches have been carried out from the past. This study aims at improving safety of labors in construction site by constructing an effective automatic safety helmet detection system using object detection algorithm based on image data of construction field. Deep learning was conducted using Region-based Fully Convolutional Network (R-FCN) which is one of the object detection algorithms based on Convolutional Neural Network (CNN) with Transfer Learning technique. Learning was conducted with 1089 images including human and safety helmet collected from ImageNet and the mean Average Precision (mAP) of the human and the safety helmet was measured as 0.86 and 0.83, respectively.

Deep Learning-based Pes Planus Classification Model Using Transfer Learning

  • Kim, Yeonho;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.21-28
    • /
    • 2021
  • This study proposes a deep learning-based flat foot classification methodology using transfer learning. We used a transfer learning with VGG16 pre-trained model and a data augmentation technique to generate a model with high predictive accuracy from a total of 176 image data consisting of 88 flat feet and 88 normal feet. To evaluate the performance of the proposed model, we performed an experiment comparing the prediction accuracy of the basic CNN-based model and the prediction model derived through the proposed methodology. In the case of the basic CNN model, the training accuracy was 77.27%, the validation accuracy was 61.36%, and the test accuracy was 59.09%. Meanwhile, in the case of our proposed model, the training accuracy was 94.32%, the validation accuracy was 86.36%, and the test accuracy was 84.09%, indicating that the accuracy of our model was significantly higher than that of the basic CNN model.

Avocado Classification and Shipping Prediction System based on Transfer Learning Model for Rational Pricing (합리적 가격결정을 위한 전이학습모델기반 아보카도 분류 및 출하 예측 시스템)

  • Seong-Un Yu;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.329-335
    • /
    • 2023
  • Avocado, a superfood selected by Time magazine and one of the late ripening fruits, is one of the foods with a big difference between local prices and domestic distribution prices. If this sorting process of avocados is automated, it will be possible to lower prices by reducing labor costs in various fields. In this paper, we aim to create an optimal classification model by creating an avocado dataset through crawling and using a number of deep learning-based transfer learning models. Experiments were conducted by directly substituting a deep learning-based transfer learning model from a dataset separated from the produced dataset and fine-tuning the hyperparameters of the model. When an avocado image is input, the model classifies the ripeness of the avocado with an accuracy of over 99%, and proposes a dataset and algorithm that can reduce manpower and increase accuracy in avocado production and distribution households.

A Normalized Loss Function of Style Transfer Network for More Diverse and More Stable Transfer Results (다양성 및 안정성 확보를 위한 스타일 전이 네트워크 손실 함수 정규화 기법)

  • Choi, Insung;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.980-993
    • /
    • 2020
  • Deep-learning based style transfer has recently attracted great attention, because it provides high quality transfer results by appropriately reflecting the high level structural characteristics of images. This paper deals with the problem of providing more stable and more diverse style transfer results of such deep-learning based style transfer method. Based on the investigation of the experimental results from the wide range of hyper-parameter settings, this paper defines the problem of the stability and the diversity of the style transfer, and proposes a partial loss normalization method to solve the problem. The style transfer using the proposed normalization method not only gives the stability on the control of the degree of style reflection, regardless of the input image characteristics, but also presents the diversity of style transfer results, unlike the existing method, at controlling the weight of the partial style loss, and provides the stability on the difference in resolution of the input image.

Improving Human Activity Recognition Model with Limited Labeled Data using Multitask Semi-Supervised Learning (제한된 라벨 데이터 상에서 다중-태스크 반 지도학습을 사용한 동작 인지 모델의 성능 향상)

  • Prabono, Aria Ghora;Yahya, Bernardo Nugroho;Lee, Seok-Lyong
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.137-147
    • /
    • 2018
  • A key to a well-performing human activity recognition (HAR) system through machine learning technique is the availability of a substantial amount of labeled data. Collecting sufficient labeled data is an expensive and time-consuming task. To build a HAR system in a new environment (i.e., the target domain) with very limited labeled data, it is unfavorable to naively exploit the data or trained classifier model from the existing environment (i.e., the source domain) as it is due to the domain difference. While traditional machine learning approaches are unable to address such distribution mismatch, transfer learning approach leverages the utilization of knowledge from existing well-established source domains that help to build an accurate classifier in the target domain. In this work, we propose a transfer learning approach to create an accurate HAR classifier with very limited data through the multitask neural network. The classifier loss function minimization for source and target domain are treated as two different tasks. The knowledge transfer is performed by simultaneously minimizing the loss function of both tasks using a single neural network model. Furthermore, we utilize the unlabeled data in an unsupervised manner to help the model training. The experiment result shows that the proposed work consistently outperforms existing approaches.

Differences in Self-Directed Learning Readiness, Learning Presence and Learning Transfer between Low-Achievers Participating in Peer Tutoring ('동료 튜터링'에 참가한 목표달성 집단과 미달성 집단의 차이: 자기주도학습 준비도, 학습실재감, 학습전이를 중심으로)

  • Hwang, Soonhee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.581-592
    • /
    • 2020
  • This research aims to explore the effect of participation in 'peer tutoring(learning tutoring)' program designed for low achiever students, and to provide an explanation for the improvement of related extracurricular activity. For this, firstly, the study analyzed differences between goal attainment group and non-attainment group in self-directed learning readiness, learning presence and learning transfer. Secondly, the relationships between three variables were analyzed. Based on an online survey of 154 low achievers participating in learning tutoring, two research questions were examined using t-test, correlation and hierarchical multiple regression analyses. Our findings show that firstly, the academic achievement after participating in tutoring improved more than before. Secondly, there were differences in three variables by gender and grades. Also, there were differences in three variables between two groups. Finally, there was a high positive correlation between three variables, and 71% of learning transfer was explained by self-directed learning readiness and learning presence. Based on these findings, the practical implications are discussed regarding the improvement of tutoring program.