• Title/Summary/Keyword: Transfer Layer

Search Result 1,530, Processing Time 0.032 seconds

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Recent applications of lubricant-impregnated nanoporous surface : A Review (윤활액이 담지된 나노다공성 표면의 최신 응용분야)

  • Kyeongwan Han;Kichang Bae;Junghoon Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Lubricant-impregnated nanoporous surfaces (LIS), which is created by impregnating water-immiscible oil into nanoporous surface structure, have been explored considering wide range of application fields. Due to the lubricant impregnated in nanoporous structure, the surface shows extreme de-wetting with a high mobility of water droplets, so that various functionalities can be realized. The lubricant layer inhibits the contact of corrosive media to porous structure as well as metal substrate, thus the surface improves the corrosion resistance. The water on the surface freeze without any contact to solid porous structure, showing a low ice adhesion for de-icing an anti-icing. The extremely high mobility of water droplets on lubricant-impregnated porous surfaces also contributes the enhancement of condensation heat transfer as well as water harvesting from fog and moisture. Moreover, the bacteria adhesion on metal surface forming biofilms causing serious hygiene issues can be inhibited on the lubricantimpregnated surfaces. Despite of such superior functionalities, the lubricant-impregnated porous surface has a limitation of lubricant depletion by external flow of fluids. Therefore, extensive efforts to improve the durability of lubricant-impregnated surface are required for practical applications.

A Study on Combustion Characteristics of Non-Circular Grain in Hybrid Rocket for RATO (Rocket-Assisted Take Off) System (RATO(Rocket-Assisted Take Off) 시스템 적용을 위한 하이브리드 로켓 비단공형 연료 그레인 기초 연소특성 연구)

  • Su Jin Kim;Su Han Ko;Sul Hee Kim;Gyeong Mo Kim;Seong Geun Lee;Ye Chan Han;Hee Jang Moon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • In an attempt to apply hybrid rocket to the RATO (Rocket-Assisted Take Off) system, combustion characteristics of the non-circular grain were figured out in this study. Having larger combustion area, it was reconfirmed that the non-circular grain has advantages over regression rate, characteristic velocity and chamber pressure in which all gave higher values. Experiments were performed to understand the effect of the non-circular grain geometry over time where local regression rates depending on grain location were analyzed. It was found that the regression rate of five distinct locations were different. Partial conclusion driven was that these differences are due to the heat transfer caused by dissimilar distances from the flame layer. Besides, as combustion duration increased, the fuel port became circular, and the regression rate converged to a single value over the whole grain.

A Defect Detection Algorithm of Denim Fabric Based on Cascading Feature Extraction Architecture

  • Shuangbao, Ma;Renchao, Zhang;Yujie, Dong;Yuhui, Feng;Guoqin, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Defect detection is one of the key factors in fabric quality control. To improve the speed and accuracy of denim fabric defect detection, this paper proposes a defect detection algorithm based on cascading feature extraction architecture. Firstly, this paper extracts these weight parameters of the pre-trained VGG16 model on the large dataset ImageNet and uses its portability to train the defect detection classifier and the defect recognition classifier respectively. Secondly, retraining and adjusting partial weight parameters of the convolution layer were retrained and adjusted from of these two training models on the high-definition fabric defect dataset. The last step is merging these two models to get the defect detection algorithm based on cascading architecture. Then there are two comparative experiments between this improved defect detection algorithm and other feature extraction methods, such as VGG16, ResNet-50, and Xception. The results of experiments show that the defect detection accuracy of this defect detection algorithm can reach 94.3% and the speed is also increased by 1-3 percentage points.

Modeling of deposition and erosion of CRUD on fuel surfaces under sub-cooled nucleate boiling in PWR

  • Seungjin Seo;Nakkyu Chae;Samuel Park;Richard I. Foster;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2591-2603
    • /
    • 2023
  • Simulating the Corrosion-Related Unidentified Deposit (CRUD) on the surface of fuel assemblies is necessary to predict the axial offset anomaly and the localized corrosion induced by the CRUD during the operation of nuclear power plants. A new CRUD model was developed to predict the formation of the CRUD deposits, considering the deposition and erosion mechanisms. The heat transfer and capillary flow within the CRUD were also considered to evaluate the boiling amount within the CRUD layer. This model predicted a CRUD deposit thickness of 44 ㎛ during a one-cycle operation of the Seabrook nuclear power plant. The CRUD deposition tended to accelerate and decelerate during the simulation, by being related to boiling mechanism on the deposits surface. Additionally, during a three-cycle operation corresponding to the refueling period, the CRUD deposition was saturated at a thickness of 80 ㎛, which was in good agreement with the suggested thickness for CRUD buildupin pressurized water reactors. Surface boiling on the thin CRUD deposits enhanced the acceleration of the deposition, even when the wick boiling properties were not favorable for CRUD deposition. To ensure the certainty of the simulation results, sensitivity analyses were conducted for the porosity, chimney density, and the constants employed in the proposed model of the CRUD.

Malware detection methodology through on pre-training and transfer learning for AutoEncoder based deobfuscation (AutoEncoder 기반 역난독화 사전학습 및 전이학습을 통한 악성코드 탐지 방법론)

  • Jang, Jae-Seok;Ku, Bon-Jae;Eom, Sung-Jun;Han, Ji-Hyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.905-907
    • /
    • 2022
  • 악성코드를 분석하는 기존 기법인 정적분석은 빠르고 효율적으로 악성코드를 탐지할 수 있지만 난독화된 파일에 취약한 반면,, 동적분석은 난독화된 파일에 적합하지만 느리고 비용이 많이 든다는 단점을 가진다. 본 연구에서는 두 분석 기법의 단점을 해결하기 위해 딥러닝 모델을 활용한 난독화에 강한 정적분석 모델을 제안하였다. 본 연구에서 제안한 방법은 원본 코드 및 난독화된 파일을 grayscale 이미지로 변환하여 데이터셋을 구축하고 AutoEncoder 를 사전학습시켜 encoder 가 원본 파일과 난독화된 파일로부터 원본 파일의 특징을 추출할 수 있도록 한 이후, encoder 의 output 을 fully connected layer 의 입력으로 넣고 전이학습시켜 악성코드를 탐지하도록 하였다. 본 연구에서는 제안한 방법론은 난독화된 파일에서 악성코드를 탐지하는 성능을 F1 score 기준 14.17% 포인트 향상시켰고, 난독화된 파일과 원본 파일을 전체를 합친 데이터셋에서도 악성코드 탐지 성능을 F1 score 기준 7.22% 포인트 향상시켰다.

Optimized patch feature extraction using CNN for emotion recognition (감정 인식을 위해 CNN을 사용한 최적화된 패치 특징 추출)

  • Irfan Haider;Aera kim;Guee-Sang Lee;Soo-Hyung Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.510-512
    • /
    • 2023
  • In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.

Characteristic analysis and condenser design of gas helium circulation system for zero-boil-off storage tank

  • Jangdon Kim;Youngjun Choi;Keuntae Lee;Jiho Park;Dongmin Kim;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.65-69
    • /
    • 2023
  • Hydrogen is an eco-friendly energy source and is being actively researched in various fields around the world, including mobility and aerospace. In order to effectively utilize hydrogen energy, it should be used in a liquid state with high energy storage density, but when hydrogen is stored in a liquid state, BOG (boil-off gas) is generated due to the temperature difference with the atmosphere. This should be re-condensed when considering storage efficiency and economy. In particular, large-capacity liquid hydrogen storage tank is required a gaseous helium circulation cooling system that cools by circulating cryogenic refrigerant due to the increase in heat intrusion from external air as the heat transfer area increases and the wide distribution of the gas layer inside the tank. In order to effectively apply the system, thermo-hydraulic analysis through process analysis is required. In this study, the condenser design and system characteristics of a gaseous helium circulation cooling system for BOG recondensation of a liquefied hydrogen storage tank were compared.

The Roles of Electrolyte Additives on Low-temperature Performances of Graphite Negative Electrode (전해액 첨가제가 흑연 음극의 저온특성에 미치는 영향)

  • Park, Sang-Jin;Ryu, Ji-Heon;Oh, Seung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • SEI (solid electrolyte interphase) layers are generated on a graphite negative electrode from three different electrolytes and low-temperature ($-30^{\circ}C$) charge/discharge performance of the graphite electrode is examined. The electrolytes are prepared by adding 2 wt% of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) into a standard electrolyte solution. The charge-discharge capacity of graphite electrode shows the following decreasing order; FEC-added one>standard>VC-added one. The polarization during a constant-current charging shows the reverse order. These observations illustrate that the SEI film resistance and charge transfer resistance differ according to the used additives. This feature has been confirmed by analyzing the chemical composition and thickness of three SEI layers. The SEI layer generated from the standard electrolyte is composed of polymeric carbon-oxygen species and the decomposition products ($Li_xPF_yO_z$) of lithium salt. The VC-derived surface film shows the largest resistance value even if the salt decomposition is not severe due to the presence of dense film comprising C-O species. The FEC-derived SEI layer shows the lowest resistance value as the C-O species are less populated and salt decomposition is not serious. In short, the FEC-added electrolyte generates the SEI layer of the smallest resistance to give the best low-temperature performance for the graphite negative electrode.

Systems for Production of Calves from Cultured Bovine Embryonic Cells (우 수정란의 배양세포들로부터 송아지 생산을 위한 체계)

  • ;N. L. First
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.4
    • /
    • pp.299-307
    • /
    • 1995
  • The goal of cell stem cell technology is to produce a viable and genetically normal animal. To achieve this goal various laboratories have followed 2 different pathways beginning with either the culture of 1) single or pooled ICMs grown with or without a feeder layer or 2) single or pooled 16-20 cell stage embryos grown with a feeder layer. Also, thus far embryonic cell cultures or lines have been established by several methods including loose suspension culture for short-term cultures and more commonly murine or bovine fibroblast feeder layers for long-term culture. Pluripotent lines have been derived from 16-cell through blastocyst inner cell mass stages. The efficiency of establishing cell lines and cell proliferation apper to be affected by the number of cells or embryos starting the line. Most attempts to produce offspring from long term STO cell feeder layer cultured ICM or morulae derived ES cells have resulted in pregnancy failure in the first trimester when ES cells were used in cuclear transfer or have failed to retain ES cells in the progeny produced by chimerization. The exception is 1 chimeric fetus from use of morula ES cells in the chimerization with early embryonic cells. There is much to be learned yet about ES cell culture requirements for maintenance of totipotency. If bovine ES cell lines loose imprinting pattern and totipotency with long-term culture and passage as suggested for mouse ES cells, we may be limited to the use of short-term cultures for multiplication of embryos and efficient production of transgenic animals. No bovine ES cell system has yet met all of the criteria indicated for a totipotent ES cell line.

  • PDF