• Title/Summary/Keyword: Transfer Function Methods

Search Result 364, Processing Time 0.024 seconds

머리전달함수 측정법의 실험적 비교 (Comparison of Measurement Methods for Head-related Transfer Function(HRTF))

  • 안태수;이두호
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1260-1268
    • /
    • 2009
  • Three methods(the stepped sine method, the statistical method(random excitation method) and the maximum-length sequence(MLS) method) for head-related transfer functions(HRTFs) are experimentally compared in view point of accuracy and efficiency. First, the stepped sine method has high signal-to-noise ratio, but low efficiency. Second, the statistical method is fast measurement speed, but weak to noise than the other methods. Finally, the MLS method shows both good efficiency and high signal-to-noise ratio, but it needs additional software or equipment such as MLS signal generator. For comparison of measurement accuracy, HRTFs of KEMAR dummy are measured for various azimuths and elevations. Error norms for magnitude and phase of HRTFs are defined and calculated for the measured HRTFs. The calculated error norms show that the methods give similar results in magnitude and phase except a little phase difference in the MLS method.

보 전달함수법을 이용한 콘크리트 구조물의 동특성 측정 (Measurement of Dynamic Properties of Concrete Structures Using Beam Transfer Function Methods)

  • 김승준;유승엽;정영;전진용;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.950-953
    • /
    • 2006
  • The floor impact noise of concrete structures in apartments buildings is affected from the flexural wave propagation characteristics. Accordingly, the measurement of wave propagation characteristics is required for suggestion of efficient method to reduce the impact noise. The purpose of this article is to propose an experimental technique to measure dynamic properties of concrete structures. The method was proposed using the flexural wave propagation characteristics. Wave speeds, bending stiffness and their loss factors are estimated from which the vibration dissipation capabilities are investigated. Several different concrete beam structures were custom-built for measurement. The damping treatments using viscoelastic materials for reducing noise generation are also tested. The beam transfer function of the damped beam is predicted using the compressional damping model from which the mechanism of the vibration energy dissipation is investigated.

  • PDF

단기 시계열 제품의 전이함수를 이용한 수요예측과 마케팅 정책에 미치는 영향에 관한 연구 (A Study on the Demand Forecasting by using Transfer Function with the Short Term Time Series and Analyzing the Effect of Marketing Policy)

  • 서명율;이종태
    • 산업공학
    • /
    • 제16권4호
    • /
    • pp.400-410
    • /
    • 2003
  • Most of the demand forecasting which have been studied is about long-term time series over 15 years demand forecasting. In this paper, we set up the most optimal ARIMA model for the short-term time series demand forecasting and suggest demand forecasting system for short-term time series by appraising suitability and predictability. We are going to use the univariate ARIMA model in parallel with the bivariate transfer function model to improve the accuracy of forecasting. We also analyze the effect of advertisement cost, scale of branch stores, and number of clerk on the establishment of marketing policy by applying statistical methods. After then we are going to show you customer's needs, which are number of buying products. We have applied this method to forecast the annual sales of refrigerator in four branch stores of A company.

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

중금속 오염 농경지의 식물유효태 예측 모델식 개발: 우리나라 폐광산 인근 농경지 토양 사례 연구 (Transfer Function for Phytoavailable Heavy Metals in Contaminated Agricultural Soils: The Case of The Korean Agricultural Soils Affected by The Abandoned Mining Sites)

  • 임가희;김계훈;서병환;김권래
    • 한국환경농학회지
    • /
    • 제33권4호
    • /
    • pp.271-281
    • /
    • 2014
  • BACKGROUND: Application of the transfer functions derived from local soil data is necessary in order to develop proper management protocols for agricultural soils contaminated with heavy metals through phytoavailability control of the heavy metals. The aim of this study was to derive the transfer functions of Korean agricultural soils affected by the abandoned mining sites and evaluate suitability of the derived transfer functions. METHODS AND RESULTS: 142 agricultural soils affected by the abandoned mining sites were collected and analyzed. Two extraction methods, including 1 M $NH_4NO_3$ extraction and 0.01 M $Ca(NO_3)_2$ extraction were applied to determine phytoavailable metal pools in soils. Multiple stepwise regression of phytoavailable metal pools against the corresponding total metal concentration and soil properties was conducted to derive suitable transfer functions for estimating phytoavailable heavy metal pools. Applicability of the derived transfer functions was examined by calculating NME and NRMSE. CONCLUSION: Soil pH and organic matter were valid variables for derivation of the transfer functions which were applicable for estimating phytoavailable metal concentrations in the soils being contaminated by heavy metals. In addition, it was confirmed that transfer functions need to be developed based on local soil conditions to accurately estimate heavy metal-phytoavailability.

CIFER ® 를 이용한 무인 헬리콥터의 동특성 분석 (III) - 전달함수 해석 - (Flight Dynamic Identification of a Model Helicopter Using CIFER® (III) - Transfer Function Analysis -)

  • 배영환;구영모
    • Journal of Biosystems Engineering
    • /
    • 제37권3호
    • /
    • pp.192-200
    • /
    • 2012
  • Purpose: Aerial application of chemicals with an agricultural helicopter allows for precise and timely spraying and reduces working labor and pollution. An attitude controller for an agricultural helicopter would be helpful to aerial application operator. The objectives of this paper are to determine the transfer function models and to estimate the handling qualities of a bare-airframe model helicopter. Methods: Transfer functions of a model unmanned helicopter were estimated by using NAVFIT and DERIVID modules of the $CIFER^{(R)}$ program to the time history data of frequency sweep flight tests. Control inputs of the transfer functions were elevator, aileron, rudder and collective pitch stick positions and the outputs were resulting on-axis movements of the fuselage. Results: Minimum realization of the transfer functions for pitch rate output to elevator control input and roll rate output to aileron control input produced second order transfer functions with undamped natural frequencies around 3.0 Hz and damping ratios of 0.139 and 0.530, respectively. The equivalent time delays of the transfer functions ranged from 0.16 to 0.44 second. Sensitivity analysis of the proposed parameters allowed derivation of minimal realization of the transfer functions. Conclusions: Handling quality of the model helicopter was addressed based on the eigenvalues of the transfer functions, corresponding undamped natural frequencies with damping ratios. The equivalent time delays of the lateral-directional motion ranged from 0.16 to 0.44 second, longer than the 0.1 to 0.15 second requirement for well-controlled typical manned aerial vehicles.

DRAINE 과 HENYEY-GREENSTEIN 산란 위상 함수 비교 (COMPARISON OF HENYEY-GREENSTEIN WITH DRAINE SCATTERNING PHASE FUNCTIONS)

  • 선광일
    • 천문학논총
    • /
    • 제23권2호
    • /
    • pp.25-29
    • /
    • 2008
  • Scattering of incident light by the interstellar dust is usually approximated by Henyey-Greenstein scattering phase function. Recently, Draine (2003) proposed a new analytic phase function with two parameters. We describe an algorithm to generate random numbers distributed according to the Draine’s function, and compare two phase functions. It is also derived exact solutions of two parameters for given values ${\langle}cos{\theta}{\rangle}$ and ${\langle}cos^2{\theta}{\rangle}$. It is found that Henyey-Greenstein function with g = ${\langle}cos{\theta}{\rangle}$ provides a good approximation for ${\lambda}\;>\;2000{\AA}$. At shorter wavelengths, more realistic phase function may be needed for radiative transfer models.

주파수 영역에서 Walsh 함수에 의한 전달함수의 간단화 (Simplification of Transfer Function Via Walsh Function in Frequency Domain)

  • Doo-Soo Ahn
    • 대한전기학회논문지
    • /
    • 제31권8호
    • /
    • pp.33-38
    • /
    • 1982
  • This paper deals with the simplification of the transfer function in a frequency domain, viz. the integral of the squared errors between the original and the simplified model is minimized and the latter is estimated by the Walsh function. It tries to minimize the errors between the frequency responses of the two functions. This method is compared with the existing method by means of a numercal example. The frequency response of this simplified model approximates closely to that of the original model. The proposed method is simpler in analysis and easier in implementation than the existing methods. Though the Walsh function can be easily generated with the discrete values, it has errors because its zero crossings are not continuous. This method aims at the reduction of the errors in the real parts and the imaginary parts of the two functions by dividing into the more sub-intervals, and selecting the reduced-order model according to the response of the model. As a result, it can be applied for the simplification of higher order functions into lower order functions and for the design of control systems.

  • PDF

부분구조합성법을 이용한 판의 모우드해석 (Modal Analysis of Plate by Substructure Synthesis Method)

  • 정재훈;지태한;박영필
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.65-74
    • /
    • 1994
  • Various substructure synthesis methods, such as component mode synthesis, building block analysis and reduced impedance method, are studied for the determination of vibration characteristics of plate problems. Comparisons are made for each methods in terms of accuracy and computational efficiency. Following conclusions are made from the results of computer simulations and experiments. i) The computation time of component mode synthesis is much shorter than that of whole structure analysis. The natural frequencies of lower modes obtained from component mode synthesis are almost same as those obtained from whole structure analysis, but in higher modes the differences between those two methods are increases. ii) The transfer function obtained from building block analysis is same as that obtained from the finite element method. iii) Same transfer functions can be obtained by the reduced impedance method. The computation time of reduced impedance mathod is shorter that that of general finite element method, but for the solutions in broad frequency band it requires long calculation time.

  • PDF

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.