• Title/Summary/Keyword: Transducers

Search Result 856, Processing Time 0.029 seconds

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

Development of 1-3 Piezocomposite Ultrasonic Transducers by means of the Finite Element Method (유한요소 해석법을 이용한 1-3형 압전복합체 초음파 트랜스듀서의 개발)

  • 이수성;김동현;한진호;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.274-281
    • /
    • 2004
  • In this study. a 1-3 piezo-composite single element ultrasonic transducer was designed with a commercial finite element analysis (FEA) code. PZf1ex and developed based on this design. Design with FEA could be performed overcoming many constraints of the typical theoretical method, and also was very practical. Validity of the design with the FEA was illustrated through experimental characterization of fabricated 1-3 piezo-composites and ultrasonic transducers, Through comparison with the result of the theoretical method. we confirmed the superiority of the design method using FEA.

Reflection - Transmission Type Inverse Scattering Ultrasonic Computed Tomography Using Cirucular Arc Linear Array Transducers (원호형 선배열 트랜스듀서를 이용한 빈사-투과형 역산란 초음파 토모그래피)

  • 김정순;하강열;산전황;김무준
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.268-273
    • /
    • 2004
  • A method of reflection-transmission type ultrasonic inverse scattering image was presented using linearly arrayed transducers in inner surface of half-cylinder. In this method, to reduce the number of data, the mirror effect using a reflector behind object and pulse wave with finite frequency band, To verify the proposed method, a computer simulation was performed for organic phantom specimen, As the results. it was verified that the reconstructed image was satisfactory even when the limitation view angle was limited to around 30 deg.

A Study on the develoment of FBG hydrophone (FBG(Fiber Bragg Grating)Hydrophone 개발에 관한 연구.)

  • Kim kyung-Bok;Kim Sung-Soon;Jung Jae-Myung;Kwack Kae-Dal;Lee Sang-Bae;Choi Sang-Sam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.407-410
    • /
    • 2000
  • In the using of FBG developed in home land, We designed and manufactured three types of FBG sound transducers the first in Korea. Analysizing special character's on FBG transducers manufactured, we made an experiment on respective frequency peculiarities in the water and we made an experiment on multi-point signal detection and direction about optional acoustic underwater. As the experimental result, we made it possible acoustic detection on frequency peculiarities to maximum 18k0z and made certain the system arrary possibilities, from now on we prepared the practical use study possibilities.

  • PDF

Fabrication and Characterization of an Underwater Acoustic Tonpilz Vector Sensor for the Estimation of Sound Source Direction (음원의 방향 추정을 위한 수중 음향 Tonpilz 벡터 센서의 제작 및 특성 평가)

  • Lim, Youngsub;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.351-359
    • /
    • 2015
  • Typical underwater acoustic transducers detect only the magnitude of an acoustic pressure and they have the limitation of not being able to recognize the direction of the sound signal. Hence, the authors of this paper proposed a new vector sensor structure based on Tonpilz transducers that could detect both the magnitude and the direction of a sound pressure. In the proposed structure, the piezoceramic ring was divided into four segments, and proper combination of the output voltages of the segments in response to the external sound pressure could provide the information on the orientation of the sound source. In this paper, a Tonpilz transducer has been fabricated to have the proposed structure and its characteristics has been measured to confirm the validity of the proposed structure.

Improvement of an Ultrasonic Transducer for Measuring Both Flow Velocity and Pipe Thickness (유속 및 파이프 두께 측정 겸용 초음파 트랜스듀서 개선)

  • Kim, Ju Wan;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.148-156
    • /
    • 2016
  • The paper deals with improvement of a piezoelectric ultrasonic transducer for measuring both pipe thickness and flow velocity. The transducer structure is based on the conventional transducers for measuring flow velocity by obliquely transmitting ultrasonic waves to the flow direction. The transducer invented earlier for measuring flow velocity and pipe thickness had an advantage of including only one piezoelectric disc, but for the thickness measurement the ultrasonic wave had to be reflected twice in a wedge material to be transmitted vertically to a pipe, and thus the wave signal was too weak. The transducer has been improved to transmit waves for thickness measurement vertically to a pipe without any prior reflection by electrically connecting two piezoelectric discs, one for flow velocity and the other for pipe thickness measurement. By comparing the measured results of specimen thickness with the improved transducer and conventional transducers, the accuracies of the improved one have been evaluated in the pipe thickness measurements.

Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes

  • Niu, Xudong;Marques, Hugo R.;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.761-776
    • /
    • 2018
  • Guided wave testing is a reliable and safe method for pipeline inspection. In general, guided wave testing employs a circumferential array of piezoelectric transducers to clamp on the pipe circumference. The sensitivity of the operation depends on many factors, including transducer distribution across the circumferential array. This paper presents the sensitivity analysis of transducer array for the circumferential characteristics of guided waves in a pipe using finite element modelling and experimental studies. Various cases are investigated for the outputs of guided waves in the numerical simulations, including the number of transducers per array, transducer excitation variability and variations in transducer spacing. The effect of the dimensions of simulated notches in the pipe is also investigated for different arrangements of the transducer array. The results from the finite element numerical simulations are then compared with the related experimental results. Results show that the numerical outputs agree well with the experimental data, and the guided wave mode T(0,1) presents high sensitivity to the notch size in the circumferential direction, but low sensitivity to the notch size in the axial direction.

Assessment of temperature effect in structural health monitoring with piezoelectric wafer active sensors

  • Kamas, Tuncay;Poddar, Banibrata;Lin, Bin;Yu, Lingyu
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.835-851
    • /
    • 2015
  • This paper presents theoretical and experimental evaluation of the structural health monitoring (SHM) capability of piezoelectric wafer active sensors (PWAS) at elevated temperatures. This is important because the technologies for structural sensing and monitoring need to account for the thermal effect and compensate for it. Permanently installed PWAS transducers have been One of the extensively employed sensor technologies for in-situ continuous SHM. In this paper, the electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS behavior and as a high frequency standing wave local modal technique. Another SHM technology utilizes PWAS as far-field transient transducers to excite and detect guided waves propagating through the structure. This paper first presents how the EMIS method is used to qualify and quantify circular PWAS resonators in an increasing temperature environment up to 230 deg C. The piezoelectric material degradation with temperature was investigated and trends of variation with temperature were deduced from experimental measurements. These effects were introduced in a wave propagation simulation software called Wave Form Revealer (WFR). The thermal effects on the substrate material were also considered. Thus, the changes in the propagating guided wave signal at various temperatures could be simulated. The paper ends with summary and conclusions followed by suggestions for further work.

A Astudy on Bandwidth Enhancement of a Ultrasonic Transducer with a Taper (Taper형 초음파 진동자의 대역폭 개선에 관한 연구)

  • 정봉규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.312-322
    • /
    • 1999
  • A ultrasonic transduce with a single acoustic matching layer has been designed as an attempt to increase the bandwidth of underwater transducer. The wideband resonance condition was accomplished by attaching a single matching layer on the front face of a ceramic resonator composed of a piezoelectric bar, a taper part and a head part. A modified Mason's model was used for the performance analysis and the design of transducers, and the constructed transducers were tested experimentally and numerically by changing the impedance and thickness of the matching layer in the water tank.The obtained results are summarized as follows:1. Measured resonant and antiresonant frequencies of the piezoelectric transducer with no matching layer in air were 24.7 kHz and 25.6 kHz, respectively. 2. Two resonant frequencies of the piezoelectric transducer with a single matching layer were 21.7 kHx and 26.9 kHz, respectively, in air and 21.4 kHz and 22.7 kHz, respectively, with a water load.3. Two distinct resonance peaks in the transmitting voltage response(TVR) of the developed transducer were observed at 22.0 kHz and 25.8 kHz, respectively, with center frequency of 24.0 kHz. The values of TVR at these frequencies were 130.1 dB re $1 \muPa$/V at 22.0 kHz and 128.5 dB re $1 \muPa$/V at 25.8 kHz, respectively.Reasonable agreement between the experimental results and the numerical values was achieved.

  • PDF

On the Beam Focusing Behavior of Time Reversed Ultrasonic Arrays Using a Multi-Gaussian Beam Model

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Jeong, Yon-Ho;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2008
  • One of the fundamental features of time reversal acoustic (TRA) techniques is the ability to focus the propagating ultrasonic beam to a specific point within the test material. Therefore, it is important to understand the focusing properties of a TR device in many applications including nondestructive testing. In this paper, we employ an analytical scheme for the analysis of TR beam focusing in a homogeneous medium. More specifically, a nonparaxial multi-Gaussian beam (NMGB) model is used to simulate the focusing behavior of array transducers composed of multiple rectangular elements. The NMGB model is found to generate accurate beam fields beyond the nonparaxial region. Two different simulation cases are considered here for the focal points specified on and off from the central axis of the array transducer. The simulation results show that the focal spot size increases with increasing focal length and focal angle. Furthermore, the maximum velocity amplitude does not always coincide with the specified focal point. Simulation results for the off-axis focusing cases do demonstrate the accurate steering capability of the TR focusing.